Affordable Access

Access to the full text

Thermal behaviour of bambus[6]uril and its chloride caviplex

Authors
  • Cicolani, Renato Salviato1
  • Job, Aldo Eloizo2
  • Tonin, Fernando Gustavo3
  • Correia, Henrique Dias1
  • Demets, Grégoire Jean-François1
  • 1 Universidade de São Paulo, Departamento de Química, F.F.C.L.R.P, Av. Bandeirantes 3900, Ribeirão Preto, S.P., CEP 14040-901, Brazil , Ribeirão Preto (Brazil)
  • 2 Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Ciências e Tecnologia de Presidente Prudente, Rua Roberto Simonsen, 305 Centro Educacional, Presidente Prudente, S.P., 19060-900, Brazil , Presidente Prudente (Brazil)
  • 3 Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Av. Duque de Caxias Norte, 225 Campus Fernando Costa, Pirassununga, S.P., CEP 13635-900, Brazil , Pirassununga (Brazil)
Type
Published Article
Journal
Journal of Thermal Analysis and Calorimetry
Publisher
Springer Netherlands
Publication Date
Oct 08, 2018
Volume
136
Issue
3
Pages
1195–1199
Identifiers
DOI: 10.1007/s10973-018-7755-0
Source
Springer Nature
Keywords
License
Yellow

Abstract

The present paper presents the thermal behaviour of methyl-bambus[6]uril in its anion-free and chlorine-included form. Our study was based on thermogravimetry associated to Fourier-transform infrared spectroscopy and differential scanning calorimetry. The compounds decompose after 300∘C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$300\,^{\circ }\hbox {C}$$\end{document} and both forms of this macrocycle, contain four hydration water molecules. The main decomposition products are H2O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {H}_2\hbox {O}$$\end{document}, CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {CO}_2$$\end{document}, NH3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {NH}_3$$\end{document} and isocyanic acid as we could detect by FTIR spectroscopy. Finally, we verified that the caviplex loses its chloride ion after 270∘C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$270\ ^{\circ }\hbox {C}$$\end{document} and may produce the anion-free macrocyle upon heating.

Report this publication

Statistics

Seen <100 times