Affordable Access

Access to the full text

Thermal behavior of modified poly(L-lactic acid): effect of aromatic multiamide derivative based on 1H-benzotriazole

Authors
  • Cai, Yan-Hua
  • Zhao, Li-Sha
Type
Published Article
Journal
e-Polymers
Publisher
De Gruyter
Publication Date
May 09, 2016
Volume
16
Issue
4
Pages
303–311
Identifiers
DOI: 10.1515/epoly-2016-0052
Source
De Gruyter
Keywords
License
Yellow

Abstract

The goal of this work was to synthesis a novel aromatic multiamide derivative based on 1H-benzotriazole (PB) as an organic nucleating agent for poly(L-lactic acid) (PLLA), and investigate the effect of PB on the non-isothermal crystallization, melting behavior and thermal decomposition of PLLA. Here, PB was firstly synthesized through 1H-benzotriazole aceto-hydrazide and terephthaloyl chloride, then PB-nucleated PLLA was fabricated via melt-blending technology at various PB concentration from 0.5 wt% to 3 wt%. Finally, the thermal performances were evaluated through differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The high thermal decomposition temperature of PB indicated that PB possessed possibility as a nucleating agent for PLLA, and the non-isothermal crystallization behavior confirmed the crystallization accelerating effectiveness of PB for PLLA. Upon optimum concentration of 2 wt%, the onset crystallization temperature, the crystallization peak temperature and the non-isothermal crystallization enthalpy increased from 101.4°C, 94.5°C and 0.1 J·g-1 to 121.3°C, 115.8°C and 35.1 J·g-1, respectively. In addition, the non-isothermal crystallization behavior was also affected by the cooling rate and the final melting temperature. The melting behavior further evidenced the advanced nucleating ability of PB, and the competitive relationship between PB and the heating rate, the nuclear rate and crystal growth rate. Thermal stability measurement showed that PB with a concentration of 1 wt%–2 wt% could slightly improve the thermal stability of PLLA.

Report this publication

Statistics

Seen <100 times