Affordable Access

A theory of induction and classification of tensor C*-categories

  • Pinzari, Claudia
  • Roberts, John E.
Publication Date
Nov 09, 2010
Submission Date
Jul 14, 2009
arXiv ID: 0907.2459
External links


This paper addresses the problem of describing the structure of tensor C*-categories M with conjugates and irreducible tensor unit. No assumption on the existence of a braided symmetry or on amenability is made. Our assumptions are motivated by the remark that these categories often contain non-full tensor C*-subcategories with conjugates and the same objects admitting an embedding into the Hilbert spaces. Such an embedding defines a compact quantum group by Woronowicz duality. An important example is the Temperley--Lieb category canonically contained in a tensor C*-category generated by a single real or pseudoreal object of dimension bigger than 2. The associated quantum groups are the universal orthogonal quantum groups of Wang and Van Daele. Our main result asserts that there is a full and faithful tensor functor from M to a category of Hilbert bimodule representations of the compact quantum group. In the classical case, these bimodule representations reduce to the G-equivariant Hermitian bundles over compact homogeneous G-spaces, with G a compact group. Our structural results shed light on the problem of whether there is an embedding functor of M into the Hilbert spaces. We show that this is related to the problem of whether a classical compact Lie group can act ergodically on a non-type I von Neumann algebra. In particular, combining this with a result of Wassermann shows that an embedding exists if M is generated by a pseudoreal object of dimension 2.

Report this publication


Seen <100 times