The cbiS Gene of the Archaeon Methanopyrus kandleri AV19 Encodes a Bifunctional Enzyme with Adenosylcobinamide Amidohydrolase and α-Ribazole-Phosphate Phosphatase Activities

Affordable Access

The cbiS Gene of the Archaeon Methanopyrus kandleri AV19 Encodes a Bifunctional Enzyme with Adenosylcobinamide Amidohydrolase and α-Ribazole-Phosphate Phosphatase Activities

Publisher
American Society for Microbiology
Publication Date
Source
PMC
Keywords
Disciplines
  • Archaeology
  • Biology
  • Chemistry
  • Medicine
License
Unknown

Abstract

Here we report the initial biochemical characterization of the bifunctional α-ribazole-P (α-RP) phosphatase, adenosylcobinamide (AdoCbi) amidohydrolase CbiS enzyme from the hyperthermophilic methanogenic archaeon Methanopyrus kandleri AV19. The cbiS gene encodes a 39-kDa protein with two distinct segments, one of which is homologous to the AdoCbi amidohydrolase (CbiZ, EC 3.5.1.90) enzyme and the other of which is homologous to the recently discovered archaeal α-RP phosphatase (CobZ, EC 3.1.3.73) enzyme. CbiS function restored AdoCbi salvaging and α-RP phosphatase activity in strains of the bacterium Salmonella enterica where either step was blocked. The two halves of the cbiS genes retained their function in vivo when they were cloned separately. The CbiS enzyme was overproduced in Escherichia coli and was isolated to >95% homogeneity. High-performance liquid chromatography, UV-visible spectroscopy, and mass spectroscopy established α-ribazole and cobyric acid as the products of the phosphatase and amidohydrolase reactions, respectively. Reasons why the CbiZ and CobZ enzymes are fused in some archaea are discussed.

Statistics

Seen <100 times