Affordable Access

deepdyve-link

The auditory midbrain implant: Effects of electrode location

Journal
Hearing Research
Publisher
Elsevier BV
Publication Date
Jan 01, 2008
Identifiers
DOI: 10.1016/j.heares.2008.02.003
Keywords
Disciplines
  • Design
  • Physics
License
Unknown

Abstract

Abstract The auditory midbrain implant (AMI) is a new hearing prosthesis designed for stimulation of the inferior colliculus in patients who do not receive sufficient benefit from cochlear or brainstem prostheses. We have begun clinical trials in which three patients have been implanted with the AMI. Although the intended target was the central nucleus of the inferior colliculus (ICC), the electrode array was implanted into different locations across patients (i.e., ICC, dorsal cortex of inferior colliculus, lateral lemniscus). In this paper, we will summarize the effects of electrical stimulation of these different midbrain regions on various psychophysical properties and speech perception performance. The patient implanted within the intended target, the ICC, exhibited the greatest improvements in hearing performance. However, this patient has not yet achieved open-set speech perception to the performance level typically observed for cochlear implant patients, which we believe is partially due to the location of the array within the ICC. We will present findings from previous AMI studies in guinea pigs demonstrating the existence of spatially distinct functional output regions within the ICC and suggesting that further improvements in performance may be achieved by stimulating within a rostral-ventral region. Remaining questions include if a similar organization exists in the human ICC and if stimulation of its rostral-ventral region with currently available strategies (i.e., those designed for cochlear implants) can restore sufficient speech perception.

Report this publication

Statistics

Seen <100 times