Affordable Access

Temperature control in Lowicryl K4M and glycol methacrylate during polymerization: is there a low-temperature embedding method?

Authors
  • Ashford, A E
  • Allaway, W G
  • Gubler, F
  • Lennon, A
  • Sleegers, J
Type
Published Article
Journal
Journal of microscopy
Publication Date
Nov 01, 1986
Volume
144
Issue
Pt 2
Pages
107–126
Identifiers
PMID: 3546700
Source
Medline
License
Unknown

Abstract

An apparatus for embedding tissues at resin temperatures down to 228 K is described. By placing thermocouples in the resin the temperature has been monitored during embedding at low temperature with glycol methacrylate (GMA) and Lowicryl K4M. Even in this apparatus with a liquid cooling bath the heat of polymerization is not dissipated and the resin temperature rises. This rise is directly proportional to the resin temperature at the onset of polymerization and is higher in Lowicryl K4M than GMA. The initial resin temperature also affects the time taken for polymerization. The time to the onset of the peak and its duration are both increased as the temperature is lowered. This effect is more pronounced with GMA than Lowicryl K4M and polymerization of GMA is inhibited at the lowest temperature used. When Lowicryl K4M, polymerized at low temperature, is warmed up to ambient a further exothermic reaction occurs, which causes the resin temperature to rise well above ambient. Both this temperature peak and that during polymerization are reduced, but not totally eliminated, by reducing the resin volume. Air-cooled systems are inefficient compared with the low-temperature apparatus used here and the resin temperature rise is consequently greater and, even with small resin volumes, it can be very high. It is therefore unlikely for published methods that the temperature specified has been maintained in the resin during polymerization. The implications of these findings are discussed in relation to enzyme and antigen survival. Recommendations include use of very small volumes of resin, refrigerated liquid-bath rather than air-cooled systems and contact with a heat sink when specimens are warmed up to ambient temperature. Examples of enzyme reaction, antigen survival and structural preservation obtained with the method are presented.

Report this publication

Statistics

Seen <100 times