Affordable Access

Targetable HPMA copolymer-adriamycin conjugates. Recognition, internalization, and subcellular fate.

Authors
  • Omelyanenko, V
  • Kopecková, P
  • Gentry, C
  • Kopecek, J
Type
Published Article
Journal
Journal of Controlled Release
Publisher
Elsevier
Publication Date
Apr 30, 1998
Volume
53
Issue
1-3
Pages
25–37
Identifiers
PMID: 9741911
Source
Medline
License
Unknown

Abstract

Recognition, internalization, and subcellular trafficking of N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer conjugates containing N-acylated galactosamine (GalN) or monoclonal OV-TL16 antibodies (Ab) have been investigated in human hepatocarcinoma HepG2 and ovarian carcinoma OVCAR-3 cells, respectively. The intrinsic fluorescence of fluorescein or adriamycin (ADR) attached to HPMA copolymers permitted us to follow the subcellular fate of HPMA copolymer conjugates by confocal fluorescence microscopy and fluorescence spectroscopy. The pattern of fluorescence during incubation of HPMA copolymer-ADR-GalN conjugate containing lysosomally degradable tetrapeptide (GFLG) side-chains with HepG2 cells was consistent with conjugate recognition, internalization, localization in lysosomes, followed by the release of ADR from the polymer chains and ultimately diffusion via the cytoplasm into the cell nuclei. A similar pattern was observed in OVCAR-3 cells for Ab targeted HPMA copolymer conjugates. To test our hypothesis that HPMA-copolymer-bound anticancer drugs will be inaccessible to the energy-driven P-glycoprotein efflux pump in multidrug resistant (MDR) cells, we have compared the internalization of the HPMA copolymer-ADR conjugates by sensitive (A2780) and ADR-resistant (A2780/AD) ovarian carcinoma cell lines. Preliminary data on relative retention of ADR in MDR (A2780/AD) cells indicate a higher intracellular ADR concentration after incubation with HPMA copolymer-ADR conjugate when compared to incubation with free (unbound) ADR.

Report this publication

Statistics

Seen <100 times