Affordable Access

Access to the full text

Tantalum-Palladium: hysteresis-free optical hydrogen sensor over 7 orders of magnitude in pressure with sub-second response

Authors
  • Bannenberg, Lars J.
  • Schreuders, Herman
  • Dam, Bernard
Type
Published Article
Publication Date
Apr 23, 2021
Submission Date
Dec 23, 2020
Identifiers
DOI: 10.1002/adfm.202010483
Source
arXiv
License
Green
External links

Abstract

Hydrogen detection in a reliable, fast, and cost-effective manner is a prerequisite for the large-scale implementation of hydrogen in a green economy. We present thin film Ta$_{1-y}$Pd$_y$ as effective optical sensing materials with extremely wide sensing ranges covering at least seven orders of magnitude in hydrogen pressure. Nanoconfinement of the Ta$_{1-y}$Pd$_y$ layer suppresses the first-order phase transitions present in bulk and ensures a sensing response free of any hysteresis. Unlike other sensing materials, Ta$_{1-y}$Pd$_y$ features the special property that the sensing range can be easily tuned by varying the Pd concentration without a reduction of the sensitivity of the sensing material. Combined with a suitable capping layer, sub-second response times can be achieved even at room temperature, faster than any other known thin-film hydrogen sensor.

Report this publication

Statistics

Seen <100 times