Affordable Access

Access to the full text

Synthesis of Carbon Nanomaterials from Biomass Utilizing Ionic Liquids for Potential Application in Solar Energy Conversion and Storage

Authors
  • Mugadza, Kudzai
  • Stark, Annegret1
  • Ndungu, Patrick G.2
  • Nyamori, Vincent O.
  • 1 SMRI/NRF SARChI Research Chair in Sugarcane Biorefining, School of Engineering, University of KwaZulu-Natal, Durban 4041, South Africa
  • 2 Energy, Sensors and Multifunctional Nanomaterials Research Group, Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
Type
Published Article
Journal
Materials
Publisher
MDPI AG
Publication Date
Sep 07, 2020
Volume
13
Issue
18
Identifiers
DOI: 10.3390/ma13183945
PMID: 32906574
PMCID: PMC7558495
Source
PubMed Central
Keywords
License
Green

Abstract

Considering its availability, renewable character and abundance in nature, this review assesses the opportunity of the application of biomass as a precursor for the production of carbon-based nanostructured materials (CNMs). CNMs are exceptionally shaped nanomaterials that possess distinctive properties, with far-reaching applicability in a number of areas, including the fabrication of sustainable and efficient energy harnessing, conversion and storage devices. This review describes CNM synthesis, properties and modification, focusing on reports using biomass as starting material. Since biomass comprises 60–90% cellulose, the current review takes into account the properties of cellulose. Noting that highly crystalline cellulose poses a difficulty in dissolution, ionic liquids (ILs) are proposed as the solvent system to dissolve the cellulose-containing biomass in generating precursors for the synthesis of CNMs. Preliminary results with cellulose and sugarcane bagasse indicate that ILs can not only be used to make the biomass available in a liquefied form as required for the floating catalyst CVD technique but also to control the heteroatom content and composition in situ for the heteroatom doping of the materials.

Report this publication

Statistics

Seen <100 times