Affordable Access

Synaptic organization of defined motor-unit types in cat tibialis anterior.

Authors
Type
Published Article
Journal
Journal of neurophysiology
Publication Date
Volume
43
Issue
6
Pages
1631–1644
Identifiers
PMID: 7411179
Source
Medline

Abstract

1. Synaptic potentials were recorded intracellularly in tibialis anterior (TA) motoneurons following stimulation of a descending brain stem pathway, the medial longitudinal fasciculus (MLF), and three segmental inputs, the homonymous and heteronymous group Ia afferents, the group I afferents from the antagonist, and the cutaneous and muscle afferents. Intracellular stimulation of the motoneurons was used to classify them, based on the properties of the innervated muscle units, into types FF, F(int), FR, and S (6, 16). 2. The sum of the monosynaptic EPSP amplitudes resulting from stimulation of homonymous and heteronymous group Ia afferents (summed group Ia EPSP) was inversely related to motoneuron size, as assessed by motoneuron input resistance, and was inversely related to motor-unit tetanic tension. Type-FF, -FR, and -S motoneurons showed significant differences in the mean amplitude of their summed group Ia EPSPs. 3. The amplitudes of disynaptic IPSPs resulting from stimulation of group I afferents in the antagonist muscle also showed an inverse relationship to motoneuron size. The observed relationships between motoneuron size and the monosynaptic group Ia EPSP amplitude or the disynaptic group I IPSP amplitude are compatible with the "size principle" of motor-unit recruitment (26). 4. The amplitudes of the monosynaptic EPSPs evoked in TA motoneurons by stimulation of the MLF were distributed rather randomly among all types of TA motoneurons. A slight tendency of larger monosynaptic EPSPs to occur in motoneurons with larger tetanic tensions was observed. 5. The polysynaptic effects from cutaneous and muscle afferents in sural and gastrocnemius-soleus nerves were frequently excitatory on type-FF motoneurons, but were primarily inhibitory on type-FR and -S motoneurons. Clearly, the polysynaptic cutaneous and muscle inputs and the monosynaptic MLF input onto TA motoneurons show a different pattern of synaptic organization than the group I inputs. 6. In general, the synaptic organization of the TA motor nucleus is similar to that of its extensor antagonist, medial gastrocnemius (MG) (2--5, 7, 8), when analogous neural circuits are compared. This parallel organization suggests a commonality of motor-control systems for both flexor and extensor muscles.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments