Affordable Access

Symmetries and correlations in strongly interacting one-dimensional quantum gases

Authors
  • Decamp, Jean
Publication Date
Sep 25, 2018
Source
HAL-UPMC
Keywords
Language
English
License
Unknown
External links

Abstract

The main focus of this thesis is the theoretical study of strongly interacting quantum mixtures confined in one dimension and subjected to a harmonic external potential. Such strongly correlated systems can be realized and tested in ultracold atoms experiments. Their non-trivial permutational symmetry properties are investigated, as well as their interplay with correlations. Exploiting an exact solution at strong interactions, we extract general correlation properties encoded in the one-body density matrix and in the associated momentum distributions, in fermionic and Bose-Fermi mixtures. In particular, we obtain substantial results about the short-range behavior, and therefore the high-momentum tails, which display typical k^−4 laws. The weights of these tails, denoted as Tan’s contacts, are related to numerous thermodynamic properties of the systems such as the two-body correlations, the derivative of the energy with respect to the one-dimensional scattering length, or the static structure factor. We show that these universal Tan’s contacts also allow to characterize the spatial symmetry of the systems, and therefore is a deep connection between correlations and symmetries. Besides, the exchange symmetry is extracted using a group theory method, namely the class-sum method, which comes originally from nuclear physics. Moreover, we show that these systems follow a generalized version of the famous Lieb-Mattistheorem. Wishing to make our results as experimentally relevant as possible, we derive scaling laws for Tan’s contact as a function of the interaction, temperature and transverse confinement. These laws. Display displadisplay display interesting effects related to strong correlations and dimensionality.

Report this publication

Statistics

Seen <100 times