Affordable Access

Symmetries and correlations in strongly interacting one-dimensional quantum gases

  • Decamp, Jean
Publication Date
Sep 25, 2018
External links


The main focus of this thesis is the theoretical study of strongly interacting quantum mixtures confined in one dimension and subjected to a harmonic external potential. Such strongly correlated systems can be realized and tested in ultracold atoms experiments. Their non-trivial permutational symmetry properties are investigated, as well as their interplay with correlations. Exploiting an exact solution at strong interactions, we extract general correlation properties encoded in the one-body density matrix and in the associated momentum distributions, in fermionic and Bose-Fermi mixtures. In particular, we obtain substantial results about the short-range behavior, and therefore the high-momentum tails, which display typical k^−4 laws. The weights of these tails, denoted as Tan’s contacts, are related to numerous thermodynamic properties of the systems such as the two-body correlations, the derivative of the energy with respect to the one-dimensional scattering length, or the static structure factor. We show that these universal Tan’s contacts also allow to characterize the spatial symmetry of the systems, and therefore is a deep connection between correlations and symmetries. Besides, the exchange symmetry is extracted using a group theory method, namely the class-sum method, which comes originally from nuclear physics. Moreover, we show that these systems follow a generalized version of the famous Lieb-Mattistheorem. Wishing to make our results as experimentally relevant as possible, we derive scaling laws for Tan’s contact as a function of the interaction, temperature and transverse confinement. These laws. Display displadisplay display interesting effects related to strong correlations and dimensionality.

Report this publication


Seen <100 times