Affordable Access

Suppression of Penning discharges between the KATRIN spectrometers

  • Aker, M.
  • Altenmüller, K.
  • Beglarian, A.
  • Behrens, J.
  • Berlev, A.
  • Besserer, U.
  • Blaum, K.
  • Block, F.
  • Bobien, S.
  • Bornschein, B.
  • Bornschein, L.
  • Bouquet, H.
  • Brunst, T.
  • Caldwell, T.S.
  • Chilingaryan, S.
  • Choi, W.
  • Debowski, K.
  • Deffert, M.
  • Descher, M.
  • Díaz Barrero, D.
  • And 134 more
Publication Date
Dec 10, 2019
External links


The KArlsruhe TRItium Neutrino experiment (KATRIN) aims to determine the effective electron (anti)neutrino mass with a sensitivity of $0.2\textrm{ eV/c}^2$ (90$\%$ C.L.) by precisely measuring the endpoint region of the tritium $\beta$-decay spectrum. It uses a tandem of electrostatic spectrometers working as MAC-E (magnetic adiabatic collimation combined with an electrostatic) filters. In the space between the pre-spectrometer and the main spectrometer, an unavoidable Penning trap is created when the superconducting magnet between the two spectrometers, biased at their respective nominal potentials, is energized. The electrons accumulated in this trap can lead to discharges, which create additional background electrons and endanger the spectrometer and detector section downstream. To counteract this problem, "electron catchers" were installed in the beamline inside the magnet bore between the two spectrometers. These catchers can be moved across the magnetic-flux tube and intercept on a sub-ms time scale the stored electrons along their magnetron motion paths. In this paper, we report on the design and the successful commissioning of the electron catchers and present results on their efficiency in reducing the experimental background.

Report this publication


Seen <100 times