Affordable Access

Access to the full text

The SuperCam Instrument Suite on the NASA Mars 2020 Rover: Body Unit and Combined System Tests

  • Wiens, Roger C.1
  • Maurice, Sylvestre2
  • Robinson, Scott H.1
  • Nelson, Anthony E.1
  • Cais, Philippe3
  • Bernardi, Pernelle4
  • Newell, Raymond T.1
  • Clegg, Sam1
  • Sharma, Shiv K.5
  • Storms, Steven1
  • Deming, Jonathan1
  • Beckman, Darrel1
  • Ollila, Ann M.1
  • Gasnault, Olivier2
  • Anderson, Ryan B.6
  • André, Yves7
  • Michael Angel, S.8
  • Arana, Gorka9
  • Auden, Elizabeth1
  • Beck, Pierre10
  • And 112 more
  • 1 Los Alamos National Laboratory, Los Alamos, NM, USA , Los Alamos (United States)
  • 2 Université de Toulouse, UPS, CNRS, Toulouse, France , Toulouse (France)
  • 3 Univ. Bordeaux, CNRS, Bordeaux, France , Bordeaux (France)
  • 4 Observatoire de Paris, Meudon, France , Meudon (France)
  • 5 University of Hawaii, Manoa, HI, USA , Manoa (United States)
  • 6 U.S. Geological Survey Astrogeology Science Center, Flagstaff, AZ, USA , Flagstaff (United States)
  • 7 Centre National d’Etudes Spatiales, Toulouse, France , Toulouse (France)
  • 8 University of South Carolina, Columbia, SC, USA , Columbia (United States)
  • 9 University of Basque Country, UPV/EHU, Bilbao, Spain , Bilbao (Spain)
  • 10 Université Grenoble Alpes, Grenoble, France , Grenoble (France)
  • 11 Sorbonne Université, Paris, France , Paris (France)
  • 12 University of Bordeaux, Bordeaux, France , Bordeaux (France)
  • 13 Jet Propulsion Laboratory/Caltech, Pasadena, CA, USA , Pasadena (United States)
  • 14 Institut Supérieur de l’Aéronautique et de l’Espace (ISAE), Toulouse, France , Toulouse (France)
  • 15 University of Winnipeg, Winnipeg, Canada , Winnipeg (Canada)
  • 16 Univ Lyon, ENSL, Univ Lyon 1, CNRS, LGL-TPE, Lyon, 69364, France , Lyon (France)
  • 17 Université de Lorraine, Nancy, France , Nancy (France)
  • 18 California Institute of Technology, Pasadena, CA, USA , Pasadena (United States)
  • 19 University of Copenhagen, Copenhagen, Denmark , Copenhagen (Denmark)
  • 20 Institut de mécanique des fluides de Toulouse (CNRS, INP, Univ. Toulouse), Toulouse, France , Toulouse (France)
  • 21 Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA , Laurel (United States)
  • 22 Universidad de Malaga, Malaga, Spain , Malaga (Spain)
  • 23 Université de Nantes, Université d’Angers, CNRS UMR 6112, Nantes, France , Nantes (France)
  • 24 McGill University, Montreal, Canada , Montreal (Canada)
  • 25 University of Valladolid, UVA, Valladolid, Spain , Valladolid (Spain)
  • 26 Agencia Estatal Consejo Superior de Investigaciones Cientificas, Madrid, Spain , Madrid (Spain)
  • 27 University of Maryland, College Park, MD, USA , College Park (United States)
  • 28 State University of New York, Stony Brook, NY, USA , Stony Brook (United States)
  • 29 University of Massachusetts, Lowell, MA, USA , Lowell (United States)
  • 30 Observations Spatiales, Paris, France , Paris (France)
  • 31 University of New Mexico, Albuquerque, NM, USA , Albuquerque (United States)
  • 32 FiberTech Optica, Kitchener, ON, Canada , Kitchener (Canada)
  • 33 Institut d’Astrophysique Spatiale (IAS), Orsay, France , Orsay (France)
  • 34 Institute of Optical Sensor Systems, Berlin, Germany , Berlin (Germany)
  • 35 SETI Institute, Mountain View, CA, USA , Mountain View (United States)
  • 36 Université de Toulouse; UPS-OMP, Toulouse, France , Toulouse (France)
Published Article
Space Science Reviews
Publication Date
Dec 21, 2020
DOI: 10.1007/s11214-020-00777-5
Springer Nature


The SuperCam instrument suite provides the Mars 2020 rover, Perseverance, with a number of versatile remote-sensing techniques that can be used at long distance as well as within the robotic-arm workspace. These include laser-induced breakdown spectroscopy (LIBS), remote time-resolved Raman and luminescence spectroscopies, and visible and infrared (VISIR; separately referred to as VIS and IR) reflectance spectroscopy. A remote micro-imager (RMI) provides high-resolution color context imaging, and a microphone can be used as a stand-alone tool for environmental studies or to determine physical properties of rocks and soils from shock waves of laser-produced plasmas. SuperCam is built in three parts: The mast unit (MU), consisting of the laser, telescope, RMI, IR spectrometer, and associated electronics, is described in a companion paper. The on-board calibration targets are described in another companion paper. Here we describe SuperCam’s body unit (BU) and testing of the integrated instrument. The BU, mounted inside the rover body, receives light from the MU via a 5.8 m optical fiber. The light is split into three wavelength bands by a demultiplexer, and is routed via fiber bundles to three optical spectrometers, two of which (UV and violet; 245–340 and 385–465 nm) are crossed Czerny-Turner reflection spectrometers, nearly identical to their counterparts on ChemCam. The third is a high-efficiency transmission spectrometer containing an optical intensifier capable of gating exposures to 100 ns or longer, with variable delay times relative to the laser pulse. This spectrometer covers 535–853 nm (105–7070cm−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$105\text{--}7070~\text{cm}^{-1}$\end{document} Raman shift relative to the 532 nm green laser beam) with 12cm−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$12~\text{cm}^{-1}$\end{document} full-width at half-maximum peak resolution in the Raman fingerprint region. The BU electronics boards interface with the rover and control the instrument, returning data to the rover. Thermal systems maintain a warm temperature during cruise to Mars to avoid contamination on the optics, and cool the detectors during operations on Mars. Results obtained with the integrated instrument demonstrate its capabilities for LIBS, for which a library of 332 standards was developed. Examples of Raman and VISIR spectroscopy are shown, demonstrating clear mineral identification with both techniques. Luminescence spectra demonstrate the utility of having both spectral and temporal dimensions. Finally, RMI and microphone tests on the rover demonstrate the capabilities of these subsystems as well.

Report this publication


Seen <100 times