Affordable Access

Sugar transport by the marine chitinolytic bacterium Vibrio furnissii. Molecular cloning and analysis of the glucose and N-acetylglucosamine permeases.

Authors
Type
Published Article
Journal
The Journal of biological chemistry
Publication Date
Volume
271
Issue
52
Pages
33457–33467
Identifiers
PMID: 8969209
Source
Medline

Abstract

Chitin catabolism by the marine bacterium Vibrio furnissii involves chemotaxis to and transport of N-acetyl-D-glucosamine (GlcNAc) and D-glucose. We report the properties of the respective permeases that complemented E. coli Glc- Man- mutants. Although the V. furnissii Glc-specific permease (55,941 Da) shares 38% identity with E. coli IIGlc (ptsG), it is 67% identical to MalX of the E. coli maltose operon (Reidl, J., and Boos, W. (1991) J. Bacteriol. 173, 4862-4876). An adjacent open reading frame encodes a protein with 52% identity to E. coli MalY. Glc phosphorylation requires only V. furnissii MalX and the accessory phosphoenolpyruvate:glycose phosphotransferase system proteins. The V. furnissii equivalent of IIGlc was not found in the 25,000 transformants screened. The GlcNAc/Glc-specific permease (52,894 Da) shares 47% identity with the N-terminal, hydrophobic domain of E. coli IINag, but is unique among IINag proteins in that it lacks the C-terminal domain and thus requires IIIGlc for sugar fermentation in vivo and phosphorylation in vitro. While there are similarities between the phosphoenolpyruvate:glycose phosphotransferase system of V. furnissii and enteric bacteria, the differences may be important for survival of V. furnissii in the marine environment.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments