Affordable Access

Access to the full text

Subtype-associated epigenomic landscape and 3D genome structure in bladder cancer

Authors
  • Iyyanki, Tejaswi1, 2
  • Zhang, Baozhen2, 3
  • Wang, Qixuan2
  • Hou, Ye2
  • Jin, Qiushi2
  • Xu, Jie1, 2
  • Yang, Hongbo2
  • Liu, Tingting2
  • Wang, Xiaotao2
  • Song, Fan1, 2
  • Luan, Yu2
  • Yamashita, Hironobu4, 4
  • Chien, Ruby5
  • Lyu, Huijue2
  • Zhang, Lijun4
  • Wang, Lu2
  • Warrick, Joshua4, 4
  • Raman, Jay D.4
  • Meeks, Joshua J.6
  • DeGraff, David J.4, 4
  • And 1 more
  • 1 Penn State School of Medicine, Hershey, PA, USA , Hershey (United States)
  • 2 Feinberg School of Medicine Northwestern University, Chicago, IL, USA , Chicago (United States)
  • 3 Peking University Cancer Hospital and Institute, Beijing, China , Beijing (China)
  • 4 The Pennsylvania State University, College of Medicine, Hershey, PA, USA , Hershey (United States)
  • 5 University of Illinois College of Medicine, Chicago, IL, USA , Chicago (United States)
  • 6 Northwestern University, Chicago, IL, USA , Chicago (United States)
  • 7 Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA , Chicago (United States)
Type
Published Article
Publication Date
Apr 15, 2021
Volume
22
Issue
1
Identifiers
DOI: 10.1186/s13059-021-02325-y
Source
Springer Nature
License
Green

Abstract

AbstractMuscle-invasive bladder cancers are characterized by their distinct expression of luminal and basal genes, which could be used to predict key clinical features such as disease progression and overall survival. Transcriptionally, FOXA1, GATA3, and PPARG are shown to be essential for luminal subtype-specific gene regulation and subtype switching, while TP63, STAT3, and TFAP2 family members are critical for regulation of basal subtype-specific genes. Despite these advances, the underlying epigenetic mechanisms and 3D chromatin architecture responsible for subtype-specific regulation in bladder cancer remain unknown.ResultWe determine the genome-wide transcriptome, enhancer landscape, and transcription factor binding profiles of FOXA1 and GATA3 in luminal and basal subtypes of bladder cancer. Furthermore, we report the first-ever mapping of genome-wide chromatin interactions by Hi-C in both bladder cancer cell lines and primary patient tumors. We show that subtype-specific transcription is accompanied by specific open chromatin and epigenomic marks, at least partially driven by distinct transcription factor binding at distal enhancers of luminal and basal bladder cancers. Finally, we identify a novel clinically relevant transcription factor, Neuronal PAS Domain Protein 2 (NPAS2), in luminal bladder cancers that regulates other subtype-specific genes and influences cancer cell proliferation and migration.ConclusionIn summary, our work identifies unique epigenomic signatures and 3D genome structures in luminal and basal urinary bladder cancers and suggests a novel link between the circadian transcription factor NPAS2 and a clinical bladder cancer subtype.

Report this publication

Statistics

Seen <100 times