Affordable Access

Access to the full text

Subapoptogenic Oxidative Stress Strongly Increases the Activity of the Glycolytic Key Enzyme Glyceraldehyde 3-Phosphate Dehydrogenase

Authors
Type
Published Article
Journal
Annals of the New York Academy of Sciences
Publisher
Wiley (Blackwell Publishing)
Publication Date
Aug 23, 2009
Volume
1171
Issue
1
Pages
590–590
Identifiers
DOI: 10.1111/j.1749-6632.2009.04723.x
Source
LBMCC
Keywords
License
Yellow

Abstract

We have previously shown that oxidative stress induced by an apoptogenic dose of H2O2 leads to a temporary block of glycolytic flux via inactivation of the glycolytic key enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in U937 cells. This corresponds to the activation of a cell defense pathway that is triggered to repair stress-induced damage and to rescue cells from death. Here, we show that subapoptogenic doses of H2O2 affect GAPDH activity in an opposite way, leading to strong hyperactivation. This phenomenon is related to milder oxidative stress because induction of a moderate oxidative stress with an alternative approach (i.e., by decreasing glutathione content in the cells with buthionine sulphoximine) gives similar results. U937 cells hyperactivate GAPDH with the same timing observed for GAPDH alterations from apoptogenic doses of H2O2. Additionally, the prevention of the glycolytic flux sensitizes stressed cells to apoptosis. This suggests that GAPDH hyperactivity might also be an active cell response to stress, thus depicting multiple roles for glycolytic flux in different prosurvival pathways where activation depends on the strength of the oxidative stress.

Report this publication

Statistics

Seen 321 times