Affordable Access

Access to the full text

A study on mixed electro-osmotic/pressure-driven microchannel flows of a generalised Phan-Thien–Tanner fluid

Authors
  • Ribau, A. M.1
  • Ferrás, L. L.2
  • Morgado, M. L.3
  • Rebelo, M.4
  • Alves, M. A.1
  • Pinho, F. T.1
  • Afonso, A. M.1
  • 1 Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, s/n, Porto, 4200-465, Portugal , Porto (Portugal)
  • 2 Universidade do Minho, Campus de Azurém, Guimarães, 4800-058, Portugal , Guimarães (Portugal)
  • 3 University of Trás-os-Montes e Alto Douro, UTAD, Vila Real, 5001-801, Portugal , Vila Real (Portugal)
  • 4 Universidade NOVA de Lisboa, Quinta da Torre, Caparica, 2829-516, Portugal , Quinta da Torre (Portugal)
Type
Published Article
Journal
Journal of Engineering Mathematics
Publisher
Springer Netherlands
Publication Date
Mar 03, 2021
Volume
127
Issue
1
Identifiers
DOI: 10.1007/s10665-020-10071-6
Source
Springer Nature
Keywords
License
Yellow

Abstract

This work presents new semi-analytical solutions for the combined fully developed electro-osmotic pressure-driven flow in microchannels of viscoelastic fluids, described by the generalised Phan-Thien–Tanner model (gPTT) recently proposed by Ferrás et al. (Journal of Non-Newtonian Fluid Mechanics, 269:88–99, 2019). This generalised version of the PTT model presents a new function for the trace of the stress tensor—the Mittag–Leffler function—where one or two new fitting constants are considered in order to obtain additional fitting flexibility. The semi-analytical solution is obtained under sufficiently weak electric potential that allows the Debye–Hückel approximation for the electrokinetic fields and for thin electric double layers. Based on the solution, the effects of the various relevant dimensionless numbers are assessed and discussed, such as the influence of εWi2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon Wi^2$$\end{document}, of the parameters α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} of the gPTT model, and also of κ¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{\kappa }}$$\end{document}, the dimensionless Debye–Hückel parameter. We conclude that the new model characteristics enhance the effects of both εWi2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon Wi^2$$\end{document} and κ¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{\kappa }}$$\end{document} on the velocity distribution across the microchannels. The effects of a high zeta potential and of the finite size of ions are also studied numerically.

Report this publication

Statistics

Seen <100 times