Study of GSMBE growth and characteristics of high-quality strained In0.63Ga0.37As/InP quantum wells
- Authors
-
- wang, xl
- sun, dz
- kong, my
- hou, x
- zeng, yp
- chinese, xl r wang
- Publication Date
- Jan 01, 1997
- Source
- Knowledge Repository of SEMI,CAS
- Keywords
-
- 半导体材料
- Quantum Wells
- Gsmbe
- Ingaas/Inp
- Photoluminescence
- Molecular-Beam Epitaxy
- Vapor-Phase Epitaxy
- Room-Temperature
- Multilayers
- Defects
- Dislocations
- Modulation
- Lasers
- Shift
- Lasers
- Atomic Layer Deposition
- Defects
- Shift
- Multilayers
- Photoluminescence
- Atomic Layer Deposition
- Room Temperature
- Vapor Phase Epitaxy
- Quantum Wells
- Adaptive Modulation
- Dislocations
- Quantum Generators (Optical)
- Optical Quantum Generators
- Irasers
- Laser Tuning
- Dfb Lasers
- Distributed Feedback Lasers
- Dbr Lasers
- Distributed Bragg Reflector Lasers
- Pulsed Lasers
- Population Inversion
- Optical Masers
- Masers, Optical
- Light Amplification By Stimulated Emission Of Radiation
- 粒子数布居反转
- Carrier Modulation
- Dpcm (Modulation)
- Modulation/Demodulation
- Dpcm
- Differential Pulse Code Modulation
- Adaptive Differential Pulse Code Modulation
- Adaptive Delta Modulation
- Modulation
- Frank Read Sources
- Line Defects
- Dislocation Mobility
- Loops (Dislocation)
- Jogs (Dislocations)
- Kink-Band Structures
- Kink-Bands
- Slip Bands
- Slip
- Mecanismes De Glissement
- Slip Mechanisms
- Geknickte Versetzungsbaender
- Bandes De Pliage
- Versetzungen
- Dislocations (French)
- Versetzungsblockierung
- Blocage Des Dislocations
- Montee Des Dislocations
- Klettern Von Versetzungen
- Dislocation-Vacancy Interactions
- Vacancy-Dislocation Interactions
- Vacancy Condensation Loops
- Helical Dislocations
- Screw Dislocations
- Bands (Kink)
- Kink Bands
- Frank-Read Sources
- Edge Dislocations
- Dislocation Structure
- Dislocation Sources
- Dislocation Pile-Ups
- Dislocation Nucleation
- Dislocation Multiplication
- Dislocation Motion
- Dislocation Loops
- Dislocation Locking
- Dislocation Jogs
- Dislocation Interactions
- Dislocation Etching
- Dislocation Energy
- Dislocation Motion Hindrance
- Dislocation Drag
- Charged Dislocations
- Dislocation Dipoles
- Dislocation Density
- Climb, Dislocation
- Dislocation Climb
- Dislocation Arrays
- Cottrell Locking
- Cottrell Atmospheres
- Luxations
- Joints--Dislocation
- Faults (Defects)
- Imperfections
- Flaws
- Fehler
- Defauts
- Anomalies
- Many-Body Expansion
- Coulomb-Bethe
- Molecular Beam Epitaxy
- Ald
- Cvi (Fabrication)
- Vpe
- Vapor Phase Epitaxial Growth
- Hot Wall Epitaxial Growth
- Cvi (Fabrication)
- Migration-Enhanced Epitaxy
- Mbe
- Molecular Beam Epitaxial Growth
- Omvpe
- Omcvd
- Movpe
- Metalorganic Chemical Vapour Deposition
- Mocvd
- Laser Deposition
- Crystal Growth From Vapour
- Cvi
- Chemical Vapor Infiltration
- Chemical Vapour Infiltration
- Lpcvd
- Laser-Induced Cvd
- Laser Cvd
- Cvd
- Chemical Vapor Deposition
- Apcvd
- Chemical Vapour Deposition
- Ommbe
- Mombe
- Metalorganic Molecular Beam Epitaxy
- Gsmbe
- Gas Source Mbe
- Cbe
- Chemical Beam Epitaxial Growth
- Molecular Layer Epitaxial Growth
- Mle Growth
- Ale
- Atomic Layer Epitaxial Growth
- 光致发光
- Many-Body Expansion
- Coulomb-Bethe
- Molecular Beam Epitaxy
- Ald
- Vapour Phase Epitaxial Growth
- Vpe
- Vapor Phase Epitaxial Growth
- Hot Wall Epitaxial Growth
- Vapour Phase Epitaxial Growth
- Migration-Enhanced Epitaxy
- Mbe
- Molecular Beam Epitaxial Growth
- Omvpe
- Omcvd
- Movpe
- Metalorganic Chemical Vapour Deposition
- Mocvd
- Laser Deposition
- Crystal Growth From Vapour
- Cvi
- Chemical Vapor Infiltration
- Chemical Vapour Infiltration
- Lpcvd
- Laser-Induced Cvd
- Laser Cvd
- Cvd
- Chemical Vapor Deposition
- Apcvd
- Chemical Vapour Deposition
- Ommbe
- Mombe
- Metalorganic Molecular Beam Epitaxy
- Gsmbe
- Gas Source Mbe
- Cbe
- Chemical Beam Epitaxial Growth
- Molecular Layer Epitaxial Growth
- Mle Growth
- Ale
- Atomic Layer Epitaxial Growth
- Multiple Quantum Well Structures
- Wells, Quantum
- Adpcm
- London And South Eastern Library Region, Uk
- 布居反转
- Natural Lasers
- Fabry-Perot Lasers
- Lasers (Francais)
- Laser
- License
- Unknown
- External links
Abstract
High-quality compressively strained In0.63Ga0.37As/InP quantum wells with different well widths (1-11 nm) have been grown coherently on InP substrates using a home-made gas source molecular beam epitaxy (GSMBE) system. The indium composition in the wells of the sample was determined by means of high-resolution X-ray diffraction and its computer simulation. it is found that the exciton transition energies determined by photoluminescence (PL) at 10 K are in good agreement with those calculated using a deformation potential model. Sharp and intense peaks for each well can be well resolved in the 10 K PL spectra. For wells narrower than 4 nm, the line width of the PL peaks are smaller than the theoretical values of the line-width broadening due to 1 hit interface fluctuation, showing that the interface fluctuation of our sample is within 1 ML. For wells of 7 and 9 nm, the PL peak widths are as low as 4.5 meV.