Affordable Access

Study of fluid-solid thermal interactions by codes coupling / Etude des interactions thermiques fluide-structure par un couplage de codes de calcul

Authors
  • CHEMIN, Sébastien
  • LACHI, Mohammed
Publication Date
Jan 01, 2006
Source
OpenGrey Repository
Keywords
Language
French
License
Unknown

Abstract

Dans cette thèse, nous présentons le couplage thermique entre un code Navier-Stokes de type volumes finis avec un code de conduction de type éléments finis. Ce couplage a été réalisé au moyen de la bibliothèque informatique MpCCI. Le couplage entre les deux codes est effectué à l'interface par l'intermédiaire de conditions de raccord ou conditions aux limites thermiques. Ces conditions font intervenir des coefficients de couplage à l'interface et associés au milieu fluide et au milieu solide. Dans le cadre du couplage thermique en régime permanent, l'étude de la stabilité des conditions de raccord permet de définir les coefficients de couplage optimaux en terme de stabilité et de convergence. La méthode de couplage a été validée sur un cas élémentaire et sur des configurations industrielles. La deuxième partie est consacrée à l'étude du couplage en régime transitoire. Un algorithme de couplage original a été mis en oeuvre et répond à un certain nombre de besoins industriels. Cet algorithme consiste à filtrer les hautes fréquences, ce qui revient à considérer le fluide comme stationnaire à chaque instant de couplage. L'algorithme instationnaire a été validé expérimentalement sur le cas d'un écoulement sur une plaque plane. / In this thesis, a conjugate heat transfer procedure between a finite-volume Navier-Stokes solver and a finite-element conduction solver is presented. The coupling has been performed through the MpCCI library and thermal boundary conditions, on the coupling surfaces. These conditions define two coupling coefficients connecting both the fluid and the solid domain. The first part describes the fluid-solid thermal steady state coupling. The stability analysis of the boundary conditions highlights the most efficient coefficients in terms of stability and convergence. As a consequence, a steady state algorithm has been implemented. It corresponds to an iterative procedure between the Navier-Stokes solver and the heat conduction solver. Thanks to the MpCCI library, the thermal quantities (heat flux, temperature) are exchanged between each solver until the thermal steady state is reached in both the fluid and the solid domains. This coupling method has been validated on a simple case, namely a flat plate, and two industrial cases, a flow around a turbine blade and an effusion cooling system. The second part of this thesis is dedicated to the fluid-solid thermal transient coupling. An original coupling algorithm applied to industrial problems is described. This algorithm corresponds to an iterative procedure between a steady state fluid description and a transient solid description. The experimental setup consists of an interaction between a steady flowfield and a transient heat conduction in a flat plate. / REIMS-BU Sciences (514542101) / Sudoc / Sudoc / France / FR

Report this publication

Statistics

Seen <100 times