Affordable Access

Access to the full text

Studies on an Ultrasonic Synthesis, Characterization, and Thermodynamic Analysis of New Metal Nanocatalysts Applied Directly to Alcohol Fuel Cells

Authors
  • Gezer, Bahdişen1
  • 1 Uşak University, Department of Electrical and Electronics Engineering, Engineering Faculty, Uşak, 38000, Turkey , Uşak (Turkey)
Type
Published Article
Journal
Arabian Journal for Science and Engineering
Publisher
Springer-Verlag
Publication Date
Jun 16, 2018
Volume
43
Issue
11
Pages
6203–6209
Identifiers
DOI: 10.1007/s13369-018-3368-y
Source
Springer Nature
Keywords
License
Yellow

Abstract

In this study, for direct methanol fuel cell (DMFC), PtCu and PtOs nanocatalysts were prepared using the ultrasound-assisted method to directly enhance methanol fuel cell (DMFC) performance. Ultrasonic applications are safe from laboratory to industry and from environmental impacts on energy applications. It was aimed to strengthen Pt/Cu and Pt/Os dispersion with platinum nanocatalyst directly stabilized by copper (Cu) and osmium (Os) ligands and to increase active surface area by using ultrasonication method. Then, these prepared monodisperse nanomaterials for characterization techniques have been used as X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and induced paired plasma optical emission spectrometry. The results obtained show that methanol crossover has been found to decrease significantly when reaching the value of the large stable open-circuit voltage of the DMFC under the ultrasound-assisted system. Polarization performance does not change significantly. For this reason, in an ultrasound-assisted process, increased energy density of DMFC in high methanol concentration improves operating performance. The membrane electrode assembly having PtOs and PtCu provided the highest performance with the peak power density of 0.582 and 0.489 mW/cm2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {mW/cm}^{2}$$\end{document} at a temperature of 120 ∘C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\circ }\hbox {C}$$\end{document} and concentration methanol of 4 M, respectively. Based on the results of the stability tests, a commercial cathode catalyst was developed from PtCu and PtOs.

Report this publication

Statistics

Seen <100 times