Structural characterization of N-linked oligosaccharides from cellobiohydrolase I secreted by the filamentous fungus Trichoderma reesei RUTC 30.
- Authors
- Type
- Published Article
- Journal
- European journal of biochemistry / FEBS
- Publication Date
- May 01, 1997
- Volume
- 245
- Issue
- 3
- Pages
- 617–625
- Identifiers
- PMID: 9182997
- Source
- Medline
- License
- Unknown
Abstract
We have characterized the primary structures of the predominant N-linked oligosaccharides on cellobiohydrolase I from the filamentous fungus Trichoderma reesei RUTC30. Different enzymatic and chromatographic techniques were used to analyze six oligosaccharides. The combined data showed that the fungal carbohydrates have a core structure that is identical to the mammalian N-linked core. In the bulk of the N-glycans, the alpha-1,3 arm is extended with two mannoses and a glucose, suggesting incomplete processing of the oligosaccharides in the endoplasmic reticulum. The alpha-1,6 arm shows a remarkable heterogeneity: in addition to alpha-1,2-Man and alpha-1,6-Man, the presence of a terminal mannose alpha-1,6-phosphodiester was observed. This latter substituent has not been characterized before on mannosidase-processed N-glycan and its function and synthesis pathway are entirely unknown. The predominant N-glycans on cellobiohydrolase I can be represented as follows: GlcMan8GlcNAc2, GlcMan7GlcNAc2, Man7GlcNAc2, ManPGlcMan7GlcNAc2, GlcMan5GlcNAc2 and Man5GlcNAc2.