Affordable Access

Publisher Website

String non(anti)commutativity for Neveu-Schwarz boundary conditions

Authors
Type
Published Article
Publication Date
Submission Date
Identifiers
DOI: 10.1007/s10773-008-9671-8
arXiv ID: 0801.4189
Source
arXiv
External links

Abstract

The appearance of non(anti)commutativity in superstring theory, satisfying the Neveu-Schwarz boundary conditions is discussed in this paper. Both an open free superstring and also one moving in a background antisymmetric tensor field are analyzed to illustrate the point that string non(anti)commutativity is a consequence of the nontrivial boundary conditions. The method used here is quite different from several other approaches where boundary conditions were treated as constraints. An interesting observation of this study is that, one requires that the bosonic sector satisfies Dirichlet boundary conditions at one end and Neumann at the other in the case of the bosonic variables $X^{\mu}$ being antiperiodic. The non(anti)commutative structures derived in this paper also leads to the closure of the super constraint algebra which is essential for the internal consistency of our analysis.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments
F