Affordable Access

Stereochemical memory effects in alkene radical cation/anion contact ion pairs: effect of substituents, and models for diastereoselectivity.

Authors
  • Crich, David
  • Ranganathan, Krishnakumar
Type
Published Article
Journal
Journal of the American Chemical Society
Publication Date
Jul 13, 2005
Volume
127
Issue
27
Pages
9924–9929
Identifiers
PMID: 15998099
Source
Medline
License
Unknown

Abstract

A series of 12 stereochemically defined 2,m-dimethyl- and 2,m,n-trimethyl-6-benzylamino-2-nitro-3-(diphenylphosphatoxy)hexanes have been synthesized and their cyclization reactions leading to di- and trisubstituted N-benzyl pyrrolidines examined in the presence of tributyltin hydride and azoisobutyronitrile in benzene at reflux. The cyclizations are interpreted in terms of generation of an alkyl radical by abstraction of the nitro group with a stannyl radical. The phosphate leaving group is then expelled in a heterolytic cleavage to give a contact alkene radical cation/phosphate anion pair. For the majority of the examples studied, the cyclizations are best understood in terms of nucleophilic attack by the amine on the opposite face of the alkene radical cation to the one shielded by the leaving group, within the confines of the initial contact ion pair, resulting in overall cyclization with inversion of configuration. Dependent on the relative stereochemistry of the substituents, the cyclization is envisaged as taking place through either chair-like or twist-boat-like transition states with the maximum number of substituents pseudo-equatorial. The model breaks down when cyclization on the initial contact ion pair would engender significant destabilizing steric interactions, especially (1,3)A strain in the alkene radical cation. In these cases a fully equilibrated Beckwith-Houk-type transition state provides a satisfactory model. Interesting examples of matching and mismatching in the Corey-type oxazaborolidine-mediated reduction of alkyl (methyl-1-nitroethyl) ketones by a beta-methyl group in the alkyl chain are reported, and the mismatching is attributed to a developing syn-pentane interaction in the transition state.

Report this publication

Statistics

Seen <100 times