Affordable Access

Publisher Website

Stein's method and exact Berry--Esseen asymptotics for functionals of Gaussian fields

Authors
Type
Published Article
Publication Date
Submission Date
Identifiers
DOI: 10.1214/09-AOP461
Source
arXiv
External links

Abstract

We show how to detect optimal Berry--Esseen bounds in the normal approximation of functionals of Gaussian fields. Our techniques are based on a combination of Malliavin calculus, Stein's method and the method of moments and cumulants, and provide de facto local (one-term) Edgeworth expansions. The findings of the present paper represent a further refinement of the main results proven in Nourdin and Peccati [Probab. Theory Related Fields 145 (2009) 75--118]. Among several examples, we discuss three crucial applications: (i) to Toeplitz quadratic functionals of continuous-time stationary processes (extending results by Ginovyan [Probab. Theory Related Fields 100 (1994) 395--406] and Ginovyan and Sahakyan [Probab. Theory Related Fields 138 (2007) 551--579]); (ii) to ``exploding'' quadratic functionals of a Brownian sheet; and (iii) to a continuous-time version of the Breuer--Major CLT for functionals of a fractional Brownian motion.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments