Affordable Access

Statistical data mining for symbol associations in genomic databases

Authors
Type
Preprint
Publication Date
Submission Date
Identifiers
arXiv ID: 1307.1337
Source
arXiv
License
Yellow
External links

Abstract

A methodology is proposed to automatically detect significant symbol associations in genomic databases. A new statistical test is proposed to assess the significance of a group of symbols when found in several genesets of a given database. Applied to symbol pairs, the thresholded p-values of the test define a graph structure on the set of symbols. The cliques of that graph are significant symbol associations, linked to a set of genesets where they can be found. The method can be applied to any database, and is illustrated MSigDB C2 database. Many of the symbol associations detected in C2 or in non-specific selections did correspond to already known interactions. On more specific selections of C2, many previously unkown symbol associations have been detected. These associations unveal new candidates for gene or protein interactions, needing further investigation for biological evidence.

Statistics

Seen <100 times