Affordable Access

Stage-related proliferative activity determines c-myb functional requirements during normal human hematopoiesis.

Authors
  • D Caracciolo
  • D Venturelli
  • M Valtieri
  • C Peschle
  • A M Gewirtz
  • B Calabretta
Publication Date
Jan 01, 1990
Source
PMC
Keywords
Disciplines
  • Biology
  • Design
License
Unknown

Abstract

To determine if MYB protein is preferentially required during specific stages of normal human hematopoiesis we incubated normal marrow mononuclear cells (MNC) with c-myb antisense oligodeoxynucleotides. Treated cells were cultured in semisolid medium under conditions designed to favor the growth of specific progenitor cell types. Compared with untreated controls, granulocyte-macrophage (GM) CFU-derived colonies decreased 77% when driven by recombinant human (rH) IL-3, and 85% when stimulated by rH GM colony-stimulating factor (CSF); erythroid burst-forming unit (BFU-E)- and CFU-E-derived colonies decreased 48 and 78%, respectively. In contrast, numbers of G-CSF-stimulated granulocyte colonies derived from antisense treated MNC were unchanged from controls, though the numbers of cells composing these colonies decreased approximately 90%. Similar results were obtained when MY10+ cells were exposed to c-myb antisense oligomers. When compared with untreated controls, numbers of CFU-GM and BFU-E colonies derived from MY10+ cells were unchanged, but the numbers of cells composing these colonies were reduced approximately 75 and greater than 90%, respectively, in comparison with controls. c-myc sense and antisense oligomers were without significant effect in these assays. Using the reverse transcription-polymerase chain reaction, c-myb mRNA was detected in developing hematopoietic cells on days 0-8. At day 14 c-myb expression was no longer detectable using this technique. These results suggest that c-myb is required for proliferation of intermediate-late myeloid and erythroid progenitors, but is less important for lineage commitment and early progenitor cell amplification.

Report this publication

Statistics

Seen <100 times