Affordable Access

Stable Pyrrole-Linked Bioconjugates through Tetrazine-Triggered Azanorbornadiene Fragmentation.

Authors
  • Gil de Montes, Enrique
  • Istrate, Alena
  • Navo, Claudio D
  • Jiménez-Moreno, Ester
  • Hoyt, Emily A
  • Corzana, Francisco
  • Robina, Inmaculada
  • Jiménez-Osés, Gonzalo
  • Moreno-Vargas, Antonio J
  • Bernardes, Gonçalo JL
Publication Date
Feb 01, 2020
Source
Apollo - University of Cambridge Repository
Keywords
Language
English
License
Unknown
External links

Abstract

An azanorbornadiene bromovinyl sulfone reagent for cysteine-selective bioconjugation has been developed. Subsequent reaction with dipyridyl tetrazine leads to bond cleavage and formation of a pyrrole-linked conjugate. The latter involves ligation of the tetrazine to the azanorbornadiene-tagged protein through inverse electron demand Diels-Alder cycloaddition with subsequent double retro-Diels-Alder reactions to form a stable pyrrole linkage. The sequence of site-selective bioconjugation followed by bioorthogonal bond cleavage was efficiently employed for the labelling of three different proteins. This method benefits from easy preparation of these reagents, selectivity for cysteine, and stability after reaction with a commercial tetrazine, which has potential for the routine preparation of protein conjugates for chemical biology studies.

Report this publication

Statistics

Seen <100 times