Affordable Access

Stable DNA heteroduplex formation catalyzed by the Escherichia coli RecA protein in the absence of ATP hydrolysis.

Authors
Type
Published Article
Journal
Proceedings of the National Academy of Sciences
Publisher
Proceedings of the National Academy of Sciences
Volume
87
Issue
1
Pages
21–25
Source
Kowalczykowski Lab
License
Unknown

Abstract

A question remaining to be answered about RecA protein function concerns the role of ATP hydrolysis during the DNA-strand-exchange reaction. In this paper we describe the formation of joint molecules in the absence of ATP hydrolysis, using adenosine 5 -[gamma-thio]triphosphate (ATP[gamma S]) as nucleotide cofactor. Upon the addition of double-stranded DNA, the ATP[gamma S]-RecA protein-single-stranded DNA presynaptic complexes can form homologously paired molecules that are stable after deproteinization. Formation of these joint molecules requires both homology and a free homologous end, suggesting that they are plectonemic in nature. This reaction is very sensitive to magnesium ion concentration, with a maximum rate and extent observed at 4-5 mM magnesium acetate. Under these conditions, the average length of heteroduplex DNA within the joint molecules is 2.4-3.4 kilobase pairs. Thus, RecA protein can form extensive regions of heteroduplex DNA in the presence of ATP[gamma S], suggesting that homologous pairing and the exchange of the DNA molecules can occur without ATP hydrolysis. A model for the RecA protein-catalyzed DNA-strand-exchange reaction that incorporates these results and its relevance to the mechanisms of eukaryotic recombinases are presented.

Report this publication

Statistics

Seen <100 times