Affordable Access

Spectroscopy of Photovoltaic Materials: Charge-Transfer Complexes and Titanium Dioxide

Authors
  • Dillon, Robert
Publication Date
Jan 01, 2013
Source
eScholarship - University of California
Keywords
Language
English
License
Unknown
External links

Abstract

The successful function of photovoltaic (PV) and photocatalytic (PC) systems centers primarily on the creation and photophysics of charge separated electron-hole pairs. The pathway leading to separate carriers varies by material; organic materials typically require multiple events to charge separate, whereas inorganic semiconductors can directly produce free carriers. In this study, time-resolved spectroscopy is used to provide insight into two such systems: 1) organic charge-transfer (CT) complexes, where electrons and holes are tightly bound to each other, and 2) Au-TiO2 core-shell nanostructures, where free carriers are directly generated. 1) CT complexes are structurally well defined systems consisting of donor molecules, characterized by having low ionization potentials, and acceptor molecules, characterized by having high electron affinities. Charge-transfer is the excitation of an electron from the HOMO of a donor material directly into the LUMO of the acceptor material, leading to an electron and hole separated across the donor:acceptor interface. The energy of the CT transition is often less than that of the bandgaps of donor and acceptor materials individually, sparking much interest if PV systems can utilize the CT band to generate free carriers from low energy photons. In this work we examine the complexes formed between acceptors tetracyanobenzene (TCNB) and tetracyanoquinodimethane (TCNQ) with several aromatic donors. We find excitation of the charge-transfer band of these systems leads to strongly bound electron-hole pairs that exclusively undergo recombination to the ground state. In the case of the TCNB complexes, our initial studies were flummoxed by the samples' generally low threshold for photo and mechanical damage. As our results conflicted with previous literature, a significant portion of this study was spent quantifying the photodegradation process. 2) Unlike the previous system, free carriers are directly photogenerated in TiO2, and the prime consideration is avoiding loss due to recombination of the electron and hole. In this study, four samples of core-shell Au-TiO2 nanostructures are analyzed for their photocatalytic activity and spectroscopic properties. The samples were made with increasingly crystalline TiO2 shells. The more crystalline samples had higher photocatalytic activities, attributed to longer carrier lifetimes. The observed photophysics of these samples vary with excitation wavelength and detection method used. We find the time-resolved photoluminescence correlates with the samples' photocatalytic activities only when high energy, excitation wavelength less than or equal to 300 nm is used, while transient absorption experiments show no correlation regardless of excitation source. The results imply that photoexcitation with high energy photons can generate both reactive surface sites and photoluminescent surface sites in parallel. Both types of sites then undergo similar electron-hole recombination processes that depend on the crystallinity of the TiO2 shell. Surface sites created by low energy photons, as well as bulk TiO2 carrier dynamics that are probed by transient absorption, do not appear to be sensitive to the same dynamics that determine chemical reactivity.

Report this publication

Statistics

Seen <100 times