Affordable Access

deepdyve-link deepdyve-link
Publisher Website

The spatiotemporal segregation of GAD forms defines distinct GABA signaling functions in the developing mouse olfactory system and provides novel insights into the origin and migration of GnRH neurons.

Authors
  • Vastagh, Csaba
  • Schwirtlich, Marija
  • Kwakowsky, Andrea
  • Erdélyi, Ferenc
  • Margolis, Frank L
  • Yanagawa, Yuchio
  • Katarova, Zoya
  • Szabó, Gábor
Type
Published Article
Journal
Developmental Neurobiology
Publisher
Wiley (John Wiley & Sons)
Publication Date
Mar 01, 2015
Volume
75
Issue
3
Pages
249–270
Identifiers
DOI: 10.1002/dneu.22222
PMID: 25125027
Source
Medline
Keywords
License
Unknown

Abstract

Gamma-aminobutyric acid (GABA) has a dual role as an inhibitory neurotransmitter in the adult central nervous system (CNS) and as a signaling molecule exerting largely excitatory actions during development. The rate-limiting step of GABA synthesis is catalyzed by two glutamic acid decarboxylase isoforms GAD65 and GAD67 coexpressed in the GABAergic neurons of the CNS. Here we report that the two GADs show virtually nonoverlapping expression patterns consistent with distinct roles in the developing peripheral olfactory system. GAD65 is expressed exclusively in undifferentiated neuronal progenitors confined to the proliferative zones of the sensory vomeronasal and olfactory epithelia In contrast GAD67 is expressed in a subregion of the nonsensory epithelium/vomeronasal organ epithelium containing the putative Gonadotropin-releasing hormone (GnRH) progenitors and GnRH neurons migrating from this region through the frontonasal mesenchyme into the basal forebrain. Only GAD67+, but not GAD65+ cells accumulate detectable GABA. We further demonstrate that GAD67 and its embryonic splice variant embryonic GAD (EGAD) concomitant with GnRH are dynamically regulated during GnRH neuronal migration in vivo and in two immortalized cell lines representing migratory (GN11) and postmigratory (GT1-7) stage GnRH neurons, respectively. Analysis of GAD65/67 single and double knock-out embryos revealed that the two GADs play complementary (inhibitory) roles in GnRH migration ultimately modulating the speed and/or direction of GnRH migration. Our results also suggest that GAD65 and GAD67/EGAD characterized by distinct subcellular localization and kinetics have disparate functions during olfactory system development mediating proliferative and migratory responses putatively through specific subcellular GABA pools.

Report this publication

Statistics

Seen <100 times