Affordable Access

Spatial Epidemics and Local Times for Critical Branching Random Walks in Dimensions 2 and 3

Authors
  • Lalley, Steven P.
  • Zheng, Xinghua
Type
Preprint
Publication Date
Jan 02, 2009
Submission Date
Jan 02, 2009
Identifiers
arXiv ID: 0901.0246
Source
arXiv
License
Yellow
External links

Abstract

The behavior at criticality of spatial SIR (susceptible/infected/recovered) epidemic models in dimensions two and three is investigated. In these models, finite populations of size N are situated at the vertices of the integer lattice, and infectious contacts are limited to individuals at the same or at neighboring sites. Susceptible individuals, once infected, remain contagious for one unit of time and then recover, after which they are immune to further infection. It is shown that the measure-valued processes associated with these epidemics, suitably scaled, converge, in the large-N limit, either to a standard Dawson-Watanabe process (super-Brownian motion) or to a Dawson-Watanabe process with location-dependent killing, depending on the size of the the initially infected set. A key element of the argument is a proof of Adler's 1993 conjecture that the local time processes associated with branching random walks converge to the local time density process associated with the limiting super-Brownian motion.

Report this publication

Statistics

Seen <100 times