Affordable Access

deepdyve-link
Publisher Website

Some results related to the continuity problem

Authors
  • Spreen, Dieter
Type
Preprint
Publication Date
Mar 01, 2016
Submission Date
Feb 12, 2016
Identifiers
DOI: 10.1017/S0960129516000190
Source
arXiv
License
Yellow
External links

Abstract

The continuity problem, i.e., the question whether effective maps between effectively given topological spaces are effectively continuous, is reconsidered. In earlier work it was shown that this is always the case, if the effective map also has a witness for noninclusion. The extra condition does not have an obvious topological interpretation. As is shown in the present paper, it appears naturally where in the classical proof that sequentially continuous maps are continuous the Axiom of Choice is used. The question is therefore whether the witness condition appears in the general continuity theorem only for this reason, i.e., whether effective operators are effectively sequentially continuous. For two large classes of spaces covering all important applications it is shown that this is indeed the case. The general question, however, remains open. Spaces in this investigation are in general $\textit{not}$ required to be Hausdorff. They only need to satisfy the weaker $T_0$ separation condition.

Report this publication

Statistics

Seen <100 times