Affordable Access

Soft tissue attachment on sol-gel-treated titanium implants in vivo.

Authors
Type
Published Article
Journal
Journal of materials science. Materials in medicine
Publication Date
Volume
19
Issue
3
Pages
1283–1290
Identifiers
PMID: 17710511
Source
Medline
License
Unknown

Abstract

This study was designed to examine the attachment and reactions of soft tissues to sol-gel-derived TiO2 coatings. In the first experiment, TiO2 coated and uncoated titanium cylinders were placed subcutaneously into the backs of rats for 3, 11 and 90 days. Tissue response and implant surfaces were characterized with routine light microscopy and scanning electron microscopic (SEM) analysis. In the second experiment, TiO2-coated and uncoated discs were implanted subcutaneously into the backs of rats for 14 and 21 days. The discs were pulled out from the implantation sites with a mechanical testing device using a constant speed of 5 mm/min. Rupture force was registered, after which the discs were assigned for SEM and transmission electron microscopic (TEM) analysis. All the coated implants showed immediate contact with the surrounding soft tissues without a clear connective tissue capsule. Significantly better soft tissue response was measured for all the coated compared to the uncoated cylinders (p<0.01). Higher rupture forces were measured for all coated discs, although the differences were not statistically significant. An immediate and tight connection between connective tissue fibroblasts and coatings was noticed in TEM analysis. Our study indicates that TiO2 coatings improve soft tissue attachment on a titanium surface.

Statistics

Seen <100 times