Affordable Access

Access to the full text

A single-crystal neutron diffraction study of wardite, NaAl3(PO4)2(OH)4·2H2O

Authors
  • Gatta, G. Diego
  • Guastoni, Alessandro
  • Fabelo, Oscar
  • Fernandez-Diaz, Maria Teresa
Type
Published Article
Journal
Physics and Chemistry of Minerals
Publisher
Springer Berlin Heidelberg
Publication Date
Nov 19, 2018
Volume
46
Issue
4
Pages
427–435
Identifiers
DOI: 10.1007/s00269-018-1013-7
Source
Springer Nature
Keywords
License
Yellow

Abstract

The crystal structure and crystal chemistry of wardite, ideally NaAl3(PO4)2(OH)4·2H2O, was investigated by single-crystal neutron diffraction (data collected at 20 K) and electron microprobe analysis in wavelength-dispersive mode. The empirical formula of the sample used in this study is: (Na0.91Ca0.01)Σ = 0.92(Al2.97Fe3+0.05Ti0.01)Σ = 3.03(P2.10O8)(OH)4·1.74H2O. The neutron diffraction data confirm that the crystal structure of wardite can be described with a tetragonal symmetry (space group P41212, a = b = 7.0577(5) and c = 19.0559(5) Å at 20 K) and consists of sheets made of edge-sharing Na-polyhedra and Al-octahedra along with vertex-sharing Al-octahedra, parallel to (001), connected by P-tetrahedra and H bonds to form a (001) layer-type structure, which well explains the pronounced {001} cleavage of the wardite crystals. The present data show that four crystallographically independent H sites occur in the structure of wardite, two belonging to a H2O molecule (i.e., H1–O6–H2) and two forming hydroxyl groups (i.e., O5–H3 and O7–H4). The location of the hydrogen atoms allows us to define the extensive network of H bonds: the H atoms belonging to the H2O molecule form strong H bonds, whereas both the H atoms belonging to the two independent hydroxyl groups form weak interactions with bifurcated bonding schemes. As shown by the root-mean-square components of the displacement ellipsoids, oxygen and hydrogen atoms have slightly larger anisotropic displacement parameters compared to the other sites (populated by P, Al and Na). The maximum ratio of the max and min root-mean-square components of the displacement ellipsoids is observed for the protons of the hydroxyl groups, which experience bifurcated H-bonding schemes. A comparative analysis of the crystal structure of wardite and fluorowardite is also provided.

Report this publication

Statistics

Seen <100 times