Affordable Access

deepdyve-link
Publisher Website

Simplified nonlinear modeling of river flow routing

Authors
  • Litrico, X.
  • Pomet, Jean-Baptiste
  • Guinot, V.
Publication Date
Jan 01, 2010
Identifiers
DOI: 10.1016/j.advwatres.2010.06.004
OAI: oai:HAL:hal-00557998v1
Source
HAL-Descartes
Keywords
Language
English
License
Unknown
External links

Abstract

Management of open-channel flow systems requires accurate models of flow transfer. This article presents a simple nonlinear model representative of the flow transfer in a river reach. The model is obtained through linearization of a physical model, simplification using the cumulant matching method and analytic identification of a nonlinear model coinciding with the linear model around equilibrium points, corresponding to the hydraulic permanent regimes. The methodology is illustrated on the diffusive wave equation and the Saint-Venant equations. The obtained nonlinear models are compared in simulation to the initial models. The nonlinear model is shown to ensure mass conservation, despite the variable delay element of the model. The proposed model can reproduce the nonlinear behavior of the time-delay with discharge variations. It is well-suited for fast simulations, flow forecasting, and for controller design.

Report this publication

Statistics

Seen <100 times