Affordable Access

deepdyve-link
Publisher Website

Simple representation of physiological regulations in a model of lactating female: application to the dairy goat.

Authors
  • Puillet, L
  • Martin, O
  • Tichit, M
  • Sauvant, D
Type
Published Article
Journal
Animal : an international journal of animal bioscience
Publication Date
Feb 01, 2008
Volume
2
Issue
2
Pages
235–246
Identifiers
DOI: 10.1017/S1751731107001140
PMID: 22445017
Source
Medline
License
Unknown

Abstract

A dynamic model of the lactating dairy goat, combining a minimum of mechanistic representations of homeorhetic regulations and a long-term approach, was developed. It describes (i) the main changes in body weight, dry-matter intake, milk production and composition of a dairy goat; (ii) the succession of pregnancy and lactation throughout the productive life; and (iii) the major changes in dynamics induced by the female profile (production potential and body weight at maturity). The model adopts a 'pull' approach including a systematic expression of the production potential and not representing any feed limitation. It involves three sub-systems. The reproductive events sub-system drives the dynamics through time with three major events: service, kidding and drying off. It also accounts for the effect of production potential (kg of milk at the peak of lactation) and lactation number (potential reached at the fourth lactation). The regulating sub-system represents the homeorhetic mechanisms during pregnancy and lactation with two sets of theoretical hormones, one representing gestation and the other lactation. The operating sub-system describes the main physiological flows and the energetic requirements linked to these functions through a compartmental structure. Simulations were run in order to test (i) the behaviour of the model at the scale of the productive life for an average profile of female (60 kg at maturity and 4 kg of milk at peak); (ii) the sensitivity of the simulated dynamics (mainly milk production and body reserves) to the production potential and body weight at maturity; (iii) external validation with comparison of model outputs to data from the experimental flock of Grignon and data from the French milk record organization (French organism in charge of animal recording for dairy farmers). The results at the scale of one productive life show the model simulates a relevant set of dynamics. The sensitivity analysis suggests that the model fairly well simulates the link between a female's ability to produce and mobilise reserves. Finally, external validation confirms the model's ability to simulate a relevant set of physiological dynamics while pointing out some limits of the model (simulation of milk fat and protein content dynamics, for example). The results illustrate the relevance of the model in simulating biological dynamics and confirm the possibility of including minimum representations of homeorhetic regulations with a simple structure. This simplicity gives an opportunity to integrate this basic element in a herd simulator and test interactions between females' regulations and management rules.

Report this publication

Statistics

Seen <100 times