Affordable Access

Signals of the QCD phase transition in core-collapse supernovae.

Authors
Type
Published Article
Journal
Physical review letters
Publication Date
Volume
102
Issue
8
Pages
81101–81101
Identifiers
PMID: 19257729
Source
Medline
License
Unknown

Abstract

We explore the implications of the QCD phase transition during the postbounce evolution of core-collapse supernovae. Using the MIT bag model for the description of quark matter, we model phase transitions that occur during the early postbounce evolution. This stage of the evolution can be simulated with general relativistic three-flavor Boltzmann neutrino transport. The phase transition produces a second shock wave that triggers a delayed supernova explosion. If such a phase transition happens in a future galactic supernova, its existence and properties should become observable as a second peak in the neutrino signal that is accompanied by significant changes in the energy of the emitted neutrinos. This second neutrino burst is dominated by the emission of antineutrinos because the electron degeneracy is reduced when the second shock passes through the previously neutronized matter.

Statistics

Seen <100 times