Affordable Access

deepdyve-link
Publisher Website

Shortening the acquisition time of whole-body MRI: 3D T1 gradient echo Dixon vs fast spin echo for metastatic screening in prostate cancer.

Authors
  • Lecouvet, Frédéric E1
  • Pasoglou, Vassiliki2
  • Van Nieuwenhove, Sandy2
  • Van Haver, Thomas2
  • de Broqueville, Quentin2
  • Denolin, Vincent3
  • Triqueneaux, Perrine2
  • Tombal, Bertrand2
  • Michoux, Nicolas2
  • 1 Department of Radiology an Medical Imaging, Centre du Cancer and Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 10/2942, B-1200, Brussels, Belgium. [email protected] , (Belgium)
  • 2 Department of Radiology an Medical Imaging, Centre du Cancer and Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 10/2942, B-1200, Brussels, Belgium. , (Belgium)
  • 3 Philips Medical Systems International BV, Veenpluis 4-6, 5684 PC, Best, The Netherlands. , (Netherlands)
Type
Published Article
Journal
European Radiology
Publisher
Springer-Verlag
Publication Date
Feb 17, 2020
Identifiers
DOI: 10.1007/s00330-019-06515-y
PMID: 32065282
Source
Medline
Keywords
Language
English
License
Unknown

Abstract

To compare 3D T1-weighted fast spin echo (FSE) and 3D T1-weighted gradient echo (GE) mDixon as morphologic sequences to complement diffusion-weighted imaging (DWI) for the metastatic screening in prostate cancer (PCa) patients. Thirty PCa patients at high risk of metastases prospectively underwent both a 3D T1 FSE (14 min) and a rapid 3D T1 GEmDixon (1 min 20 s) sequences within a WB-MRI protocol. Two readers assessed the diagnostic performance of the FSE/Fat/in-phase (IP)/IP+Fat sequences in detecting bone and node metastases. The reference standard was established by a panel of four physicians on the basis of all baseline and follow-up imaging, biological and clinical information. The reproducibility of readings, predictive accuracy (Acc) from ROC curves analysis, and contrast-to-reference ratio (CRR) in lesions were assessed for each sequence. In bone and lymph nodes (per-region analysis), reproducibility was at least good for all sequences/readers, except for nodes in the common iliac/inguinal regions. In bone (per-organ analysis), Acc of FSE was superior to that of mDixon (difference + 4%, p < 0.0083). In nodes (per-organ analysis), Acc of Fat was superior to that of other sequences (difference + 4% to + 6% depending on reader, p < 0.0083). In the per-patient analysis, Acc of FSE was superior to that of mDixon (difference + 4% to + 6% depending on sequence, p < 0.0083). Fat images had higher CRR compared with FSE in the thoracic spine, the bony pelvis and lymph node metastases (p < 0.025). 3D T1 GEmDixon may replace 3D T1 FSE to complement DWI in WB-MRI for metastatic screening in PCa. It demonstrates an Acc ranging from + 4% to + 6% (nodes) to - 4% to - 6% (bone and patient staging) compared with FSE and considerably reduces the examination time, offering the perspective of acquiring WB-MRI examinations in less than 20 min. • The replacement of 3D T1 FSE by the 3D T1 GE mDixon as morphologic sequence to complement DWI drastically reduces the acquisition time of WB-MRI studies. • The 3D T1 GE mDixon sequence offers similar reproducibility of image readings compared with that of the 3D T1 FSE. • Differences in diagnostic accuracy are limited (+ 4%/+ 6% in favor of mDixon to detect node metastases; + 4%/+ 6% in favor of FSE to detect bone metastases/metastatic disease in a patient).

Report this publication

Statistics

Seen <100 times