Affordable Access

Access to the full text

Shoot Phenology as a Driver or Modulator of Stem Diameter Growth and Wood Properties, with Special Reference to Pinus radiata

Authors
  • burdon, rowland d.
Publication Date
Mar 13, 2023
Identifiers
DOI: 10.3390/f14030570
OAI: oai:mdpi.com:/1999-4907/14/3/570/
Source
MDPI
Keywords
Language
English
License
Green
External links

Abstract

Seasonal phenology is expressed in the annual rhythms of growth and quiescence, which may range from being sharply defined to weakly quantitative. These rhythms, both vegetative and reproductive, are a key aspect of a plant’s survival strategy. They enable the plant to both survive seasonal stresses and take advantage of favourable conditions, while making pollination efficient through synchronised flowering. Maturation in woody perennials causes some ontogenetic modulation of seasonal phenology. Shoot phenology is driven by various environmental cues, notably temperatures and daylength, with shoot extremities often being prime receptors. The phenology of shoot extremities is in turn seen as a strong driver of cambial activity, which itself is an aspect of shoot phenology and the basis of stem diameter growth. The aspects of cambial activity reflecting hoot–tip phenology primarily involve the timing of xylem formation and the anatomical and physical properties of xylem cells. The actual amount of diameter growth, however, is governed much more by other factors, notably the growth potential of the species, the space for the tree to grow in, and how favourable local conditions are for growth. Somehow, all tree species allocate resources to shoot extension and diameter growth to represent viable adaptive strategies, although there is no identified role of phenology per se in such allocation. Among species, Pinus radiata is extremely important commercially, largely through a high growth potential that reflects distinctive phenology. Much research on the species provides a basis for linking its phenology and shoot–tip architecture to seasonal timing of diameter growth and fine details of within-ring variation in xylem cell properties. This provides a baseline for comparison with many other tree species, conifers and hardwoods. Selected examples are considered to illustrate the range of adaptive strategies. Regulation of diameter growth and internal variation in wood properties reflects the response to competitive pressures. Modifying the regulation to optimise wood production and quality poses a great challenge for future domestication.

Report this publication

Statistics

Seen <100 times