Affordable Access

Serase-1B, a new splice variant of polyserase-1/TMPRSS9, activates urokinase-type plasminogen activator and the proteolytic activation is negatively regulated by glycosaminoglycans.

Authors
Type
Published Article
Journal
Biochemical Journal
1470-8728
Publisher
Portland Press
Publication Date
Volume
400
Issue
3
Pages
551–561
Identifiers
PMID: 16872279
Source
Medline

Abstract

Polyserase-1 (polyserine protease-1)/TMPRSS9 (transmembrane serine protease 9) is a type II transmembrane serine protease (TTSP) that possesses unique three tandem serine protease domains. However, the physiological function of each protease domain remains poorly understood. We discovered a new splice variant of polyserase-1, termed Serase-1B, which contains 34 extra amino acids consisting a SEA module (a domain found in sea urchin sperm protein, enterokinase and agrin) adjacent to the transmembrane domain and the first protease domain with a mucin-like box at the C-terminus. The tissue distribution of this enzyme by RT (reverse transcription)-PCR analysis revealed high expression in the liver, small intestine, pancreas, testis and peripheral blood CD14+ and CD8+ cells. To investigate the role of Serase-1B, a full-length form recombinant protein was produced. Interestingly, recombinant Serase-1B was partly secreted as a soluble inactive precursor and it was also activated by trypsin. This activated enzyme selectively cleaved synthetic peptides for trypsin and activated protein C, and it was inhibited by several natural serine protease inhibitors, such as aprotinin, alpha2-antiplasmin and plasminogen activator inhibitor 1. In addition, Serase-1B efficiently converted pro-uPA (urokinase-type plasminogen activator) into active uPA and this activation was strongly inhibited by these natural inhibitors. Furthermore, this activation was also negatively regulated by glycosaminoglycans. Our results indicate that Serase-1B is a novel member of TTSPs that might be involved in uPA/plasmin-mediated proteolysis and possibly implicated in biological events such as fibrinolysis and tumour progression.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments