Semi-Decentralized Prediction Method for Energy-Efficient Wireless Sensor Networks
- Authors
- Publication Date
- Mar 18, 2024
- Identifiers
- DOI: 10.1109/LSENS.2024.3378520
- OAI: oai:HAL:hal-04512877v1
- Source
- HAL-Descartes
- Keywords
- Language
- English
- License
- Unknown
- External links
Abstract
[graphicalabstract] Addressing key challenges in Wireless Sensor Networks (WSNs) such as network lifetime, and energy balance, this paper introduces the Semi-Decentralized Prediction Method (SDPM) for energy-efficient wireless sensor networks. This approach enhances energy efficiency by combining clustering principles with data prediction for smart Cluster-Head (CH) selection. SDPM facilitates the periodic election of an effective CH from among the cluster-nodes, who then predicts data for the nodes within the cluster, thereby reducing transmission and conserving energy. Our findings demonstrate SDPM's significant impact on reducing energy consumption, promising for real-world WSNs to achieve longer network lifetime and better energy management.