Affordable Access

Access to the full text

The semiclassical propagator in fermionic Fock space

Authors
  • Engl, Thomas
  • Plößl, Peter
  • Urbina, Juan Diego
  • Richter, Klaus
Type
Published Article
Publication Date
Sep 15, 2014
Submission Date
Sep 15, 2014
Identifiers
DOI: 10.1007/s00214-014-1563-9
Source
arXiv
License
Yellow
External links

Abstract

We present a rigorous derivation of a semiclassical propagator for anticommuting (fermionic) degrees of freedom, starting from an exact representation in terms of Grassmann variables. As a key feature of our approach the anticommuting variables are integrated out exactly, and an exact path integral representation of the fermionic propagator in terms of commuting variables is constructed. Since our approach is not based on auxiliary (Hubbard-Stratonovich) fields, it surpasses the calculation of fermionic determinants yielding a standard form $\int {\cal D}[\psi,\psi^{*}] {\rm e}^{i R[\psi,\psi^{*}]}$ with real actions for the propagator. These two features allow us to provide a rigorous definition of the classical limit of interacting fermionic fields and therefore to achieve the long-standing goal of a theoretically sound construction of a semiclassical van Vleck-Gutzwiller propagator in fermionic Fock space. As an application, we use our propagator to investigate how the different universality classes (orthogonal, unitary and symplectic) affect generic many-body interference effects in the transition probabilities between Fock states of interacting fermionic systems.

Report this publication

Statistics

Seen <100 times