Affordable Access

Access to the full text

SEIS: Insight’s Seismic Experiment for Internal Structure of Mars

  • Lognonné, P.1
  • Banerdt, W. B.2
  • Giardini, D.3
  • Pike, W. T.4
  • Christensen, U.5
  • Laudet, P.6
  • de Raucourt, S.1
  • Zweifel, P.3
  • Calcutt, S.7, 8
  • Bierwirth, M.5
  • Hurst, K. J.2
  • Ijpelaan, F.6
  • Umland, J. W.2
  • Llorca-Cejudo, R.6
  • Larson, S. A.2
  • Garcia, R. F.9
  • Kedar, S.2
  • Knapmeyer-Endrun, B.5
  • Mimoun, D.9
  • Mocquet, A.10
  • And 161 more
  • 1 Université Paris Diderot (UMR 7154 CNRS), Planetology et Space Science Team, Institut de Physique du Globe de Paris-Sorbonne Paris Cité, 35 Rue Hélène Brion, Paris, 75013, France , Paris (France)
  • 2 California Institute of Technology, Jet Propulsion Laboratory, Pasadena, CA, 91109, USA , Pasadena (United States)
  • 3 ETHZ, Institut of Geophysics, Sonneggstrasse 5, Zurich, 8092, Switzerland , Zurich (Switzerland)
  • 4 Imperial College London, Department of Electrical and Electronic Engineering, Faculty of Engineering, London, UK , London (United Kingdom)
  • 5 Max Planck Institute for Solar System Research, Department of Planets and Comets, Göttingen, Germany , Göttingen (Germany)
  • 6 Centre National d’Etudes Spatiales, 18 av. Edouard Belin, Toulouse Cedex 9, 31401, France , Toulouse Cedex 9 (France)
  • 7 University of Oxford, Atmospheric, Oceanic, & Planetary Physics, Parks Road, Oxford, OX1 3PU, UK , Oxford (United Kingdom)
  • 8 University of Oxford, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, UK , Oxford (United Kingdom)
  • 9 Toulouse University, ISAE-SUPAERO, 10 Avenue E. Belin, Toulouse, 31400, France , Toulouse (France)
  • 10 CNRS-Université de Nantes, LPG Nantes, UMR6112, 2 rue de la Houssinière, Nantes cedex 3, 44322, France , Nantes cedex 3 (France)
  • 11 NASA Marshall Space Flight Center, 320 Sparkman Drive, Huntsville, AL, 35805, USA , Huntsville (United States)
  • 12 UMR5277 CNRS - Université Toulouse III Paul Sabatier, Institut de Recherche en Astrophysique et Planétologie, 14, avenue Edouard Belin, Toulouse, 31400, France , Toulouse (France)
  • 13 Université Paris-Sud, Institut d’Astrophysique Spatiale, Bâtiment 121, Orsay Cedex, 91405, France , Orsay Cedex (France)
  • 14 LMA - UMR 7031 AMU - CNRS - Centrale Marseille, Laboratoire de Mécanique et d’Acoustique, 4 impasse Nikola Tesla, Marseille Cedex 13, 13453, France , Marseille Cedex 13 (France)
  • 15 Arup, Advanced Technology and Research, 13 Fitzroy Street, London, W1T 4BQ, UK , London (United Kingdom)
  • 16 Harwell Science and Innovation Campus, RAL Space, STFC Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK , Didcot (United Kingdom)
  • 17 Huazhong University of Science and Technology, Center for Gravitational Experiments, 1037 Luoyu Rd, Wuhan, 430074, P.R. China , Wuhan (China)
  • 18 Kinemetrics, 222 Vista Av., Pasadena, CA, 91107, USA , Pasadena (United States)
  • 19 Cornell University, Cornell Center for Astrophysics and Planetary Science, Ithaca, NY, USA , Ithaca (United States)
  • 20 Centro de Astrobiologia, Madrid, Spain , Madrid (Spain)
  • 21 University of California, Los Angeles, Earth, Planetary and Space Sciences, Los Angeles, USA , Los Angeles (United States)
  • 22 ETHZ, Swiss Seismological Service, Sonneggstrasse 5, Zurich, 8092, Switzerland , Zurich (Switzerland)
  • 23 University Cote d’Azur, Geoazur, 250 rue Einstein, Valbonne, 06560, France , Valbonne (France)
  • 24 UMR 7154 CNRS - Université Paris Diderot, Département de Sismologie, Institut de Physique du Globe de Paris-Sorbonne Paris Cité, 1 Rue Jussieu, Paris Cedex, 75238, France , Paris Cedex (France)
  • 25 Royal Observatory of Belgium, 3 avenue Circulaire, Brussels, 1180, Belgium , Brussels (Belgium)
  • 26 Ecole des Ponts ParisTech, Laboratoire Navier (CERMES), Marne la Vallée, France , Marne la Vallée (France)
  • 27 Institut de Minéralogie et de Physique des Matériaux et de Cosmochimie, 4 Place Jussieu, Paris Cedex 05, 75252, France , Paris Cedex 05 (France)
  • 28 University of British Columbia, Vancouver, BC, Canada , Vancouver (Canada)
  • 29 Planetary Science Institute, Tucson, AZ, USA , Tucson (United States)
  • 30 LNE, SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, 61 avenue de l’Observatoire, Paris, 75014, France , Paris (France)
  • 31 University of Bristol, School of Earth Sciences, Wills Memorial Building, Queens Road, Bristol, BS8 1RJ, UK , Bristol (United Kingdom)
  • 32 Princeton University, Department of Geosciences, Guyot Hall, Princeton, NJ, 08544, USA , Princeton (United States)
  • 33 Observatoire de la Côte d’Azur, Boulevard de l’Observatoire, Nice Cedex 4, 06304, France , Nice Cedex 4 (France)
  • 34 Karlsruhe Institute of Technology and Stuttgart University, Black Forest Observatory, Heubach 206, Wolfach, 77709, Germany , Wolfach (Germany)
Published Article
Space Science Reviews
Publication Date
Jan 28, 2019
DOI: 10.1007/s11214-018-0574-6
Springer Nature


By the end of 2018, 42 years after the landing of the two Viking seismometers on Mars, InSight will deploy onto Mars’ surface the SEIS (Seismic Experiment for Internal Structure) instrument; a six-axes seismometer equipped with both a long-period three-axes Very Broad Band (VBB) instrument and a three-axes short-period (SP) instrument. These six sensors will cover a broad range of the seismic bandwidth, from 0.01 Hz to 50 Hz, with possible extension to longer periods. Data will be transmitted in the form of three continuous VBB components at 2 sample per second (sps), an estimation of the short period energy content from the SP at 1 sps and a continuous compound VBB/SP vertical axis at 10 sps. The continuous streams will be augmented by requested event data with sample rates from 20 to 100 sps. SEIS will improve upon the existing resolution of Viking’s Mars seismic monitoring by a factor of ∼2500\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sim 2500$\end{document} at 1 Hz and ∼200000\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sim 200\,000$\end{document} at 0.1 Hz. An additional major improvement is that, contrary to Viking, the seismometers will be deployed via a robotic arm directly onto Mars’ surface and will be protected against temperature and wind by highly efficient thermal and wind shielding. Based on existing knowledge of Mars, it is reasonable to infer a moment magnitude detection threshold of Mw∼3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$M_{{w}} \sim 3$\end{document} at 40∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$40^{\circ}$\end{document} epicentral distance and a potential to detect several tens of quakes and about five impacts per year. In this paper, we first describe the science goals of the experiment and the rationale used to define its requirements. We then provide a detailed description of the hardware, from the sensors to the deployment system and associated performance, including transfer functions of the seismic sensors and temperature sensors. We conclude by describing the experiment ground segment, including data processing services, outreach and education networks and provide a description of the format to be used for future data distribution.

Report this publication


Seen <100 times