# Second Order Langevin Equation and Definition of Quantum Gravity By Stochastic Quantisation

- Authors
- Publication Date
- Aug 26, 2018
- Source
- HAL-UPMC
- Keywords
- Language
- English
- License
- Unknown
- External links

## Abstract

Euclidean quantum gravity might be defined by stochastic quantisation that is governed by a higher order Langevin equation rather than a first order stochastic equation. In a transitory phase where the Minkowski time cannot be defined, the parameter that orders the evolution of quantum gravity phenomena is the stochastic time. This changes the definition of causality in the period of primordial cosmology. For stochastically quantised gravity, the prediction is that there will a transition from an oscillating quantum phase to a classical one, where the Minkowski time has emerged. The end of the transition, as it can be observed from now and described by inflation models, is a diluted Universe, following the inflation phenomenological evolution. It is filled at the beginning with scattered classical primordial black holes. The smallest ones will quickly decay in matter, with a standard quantum field theory evolution till our period. The stable heavier black holes will remain, forming a good fraction of the dark matter and the large black holes observed in the galaxies. In a theoretically related way, this framework suggests the possibility of a gravitational parton content for "point-like" particles, in the same five dimensional quantum field theory context as in the primordial cosmology, with a (+----) signature for the $5$d metrics. The very precise and explicit result expressed in this paper is actually far more modest than its motivation. We compute explicitly the meaning of a second order Langevin equation in zero dimensions and define precisely what is second order stochastic quantisation in a soluble case.