Affordable Access

Seasonal water stress tolerance and habitat associations within four neotropical tree genera.

Authors
  • Baraloto, Christopher
  • Morneau, François
  • Bonal, Damien
  • Blanc, Lilian
  • Ferry, Bruno
Type
Published Article
Journal
Ecology
Publisher
Wiley (John Wiley & Sons)
Publication Date
Feb 01, 2007
Volume
88
Issue
2
Pages
478–489
Identifiers
PMID: 17479765
Source
Medline
License
Unknown

Abstract

We investigated the relationship between habitat association and physiological performance in four congeneric species pairs exhibiting contrasting distributions between seasonally flooded and terra firme habitats in lowland tropical rain forests of French Guiana, including Virola and Iryanthera (Myristicaceae), Symphonia (Clusiaceae), and Eperua (Caesalpiniaceae). We analyzed 10-year data sets of mapped and measured saplings (stems >150 cm in height and <10 cm diameter at breast height [dbh]) and trees (stems > or =10 cm dbh) across 37.5 ha of permanent plots covering a 300-ha zone, within which seasonally flooded areas (where the water table never descends below 1 m) have been mapped. Additionally, we tested the response of growth, survival, and leaf functional traits of these species to drought and flood stress in a controlled experiment. We tested for habitat preference using a modification of the torus translation method. Strong contrasting associations of the species pairs of Iryanthera, Virola, and Symphonia were observed at the sapling stage, and these associations strengthened for the tree stage. Neither species of Eperua was significantly associated with flooded habitats at the sapling stage, but E. falcata was significantly and positively associated with flooded forests at the tree stage, and trees of E. grandiflora were found almost exclusively in nonflooded habitats. Differential performance provided limited explanatory support for the observed habitat associations, with only congeners of Iryanthera exhibiting divergent sapling survival and tree growth. Seedlings of species associated with flooded forest tended to have higher photosynthetic capacity than their congeners at field capacity. In addition, they tended to have the largest reductions in leaf gas exchange and growth rate in response to experimental drought stress and the least reductions in response to experimental inundation. The corroboration of habitat association with differences in functional traits and, to a lesser extent, measures of performance provides an explanation for the regional coexistence of these species pairs. We suggest that specialization to seasonally flooded habitats may explain patterns of adaptive radiation in many tropical tree genera and thereby provide a substantial contribution to regional tree diversity.

Report this publication

Statistics

Seen <100 times