Affordable Access

Access to the full text

A Search for Warm/Hot Gas Filaments Between Pairs of SDSS Luminous Red Galaxies

Authors
  • Tanimura, Hideki
  • Hinshaw, Gary
  • McCarthy, Ian G.
  • Van Waerbeke, Ludovic
  • Aghanim, Nabila
  • Ma, Yin-Zhe
  • Mead, Alexander
  • Hojjati, Alireza
  • Tröster, Tilman
Type
Published Article
Publication Date
Nov 07, 2019
Submission Date
Sep 14, 2017
Identifiers
DOI: 10.1093/mnras/sty3118
Source
arXiv
License
Yellow
External links

Abstract

We search the Planck data for a thermal Sunyaev-Zel'dovich (tSZ) signal due to gas filaments between pairs of Luminous Red Galaxies (LRG's) taken from the Sloan Digital Sky Survey Data Release 12 (SDSS/DR12). We identify $\sim$260,000 LRG pairs in the DR12 catalog that lie within 6-10 $h^{-1} \mathrm{Mpc}$ of each other in tangential direction and within 6 $h^{-1} \mathrm{Mpc}$ in radial direction. We stack pairs by rotating and scaling the angular positions of each LRG so they lie on a common reference frame, then we subtract a circularly symmetric halo from each member of the pair to search for a residual signal between the pair members. We find a statistically significant (5.3$\sigma$) signal between LRG pairs in the stacked data with a magnitude $\Delta y = (1.31 \pm 0.25) \times 10^{-8}$. The uncertainty is estimated from two Monte Carlo null tests which also establish the reliability of our analysis. Assuming a simple, isothermal, cylindrical filament model of electron over-density with a radial density profile proportional to $r_c/r$ (as determined from simulations), where $r$ is the perpendicular distance from the cylinder axis and $r_c$ is the core radius of the density profile, we constrain the product of over-density and filament temperature to be $\delta_c \times (T_{\rm e}/10^7 \, {\rm K}) \times (r_c/0.5h^{-1} \, {\rm Mpc}) = 2.7 \pm 0.5$. To our knowledge, this is the first detection of filamentary gas at over-densities typical of cosmological large-scale structure. We compare our result to the BAHAMAS suite of cosmological hydrodynamic simulations (McCarthy et al. 2017) and find a slightly lower, but marginally consistent Comptonization excess, $\Delta y = (0.84 \pm 0.24) \times 10^{-8}$.

Report this publication

Statistics

Seen <100 times