Affordable Access

Role of the phosphatases over the erythrocytic cycle of the malaria parasite Plasmodium falciparum

Authors
  • Miliu, Alexandra Victoria
Publication Date
Nov 29, 2018
Source
HAL
Keywords
Language
English
License
Unknown
External links

Abstract

Plasmodium falciparum, the etiologic agent of malaria, is an obligate intracellular parasite of the Apicomplexa phylum that is responsible for 445000 deaths annually. Plasmodium development in human red blood cells (RBCs) corresponds to the symptomatic phase of the disease. It starts by the active penetration of the host cell by the invasive form named merozoite, followed by the parasite multiplication in a process called schizogony to form 16-32 new merozoites that are released from the RBC (egress step) and start a new cycle. During its 48h intra-erythrocytic development, this parasite uses reversible protein phosphorylation to regulate invasion, schizogony as well as egress, but our current knowledge on the contribution of parasite phosphatases in these cellular events is still very poor. The objective of my thesis was to identify and functionally characterize phosphatases potentially involved in egress or invasion during P. falciparum RBC cycle. I focused my work on 4 of them, namely PP1, PP4, PP7 and Shelph2, on the basis of their late transcriptional expression profile during the intra-erythrocytic cycle, as this profile matches the timing of these two essential events. The first part of this study is dedicated to the functional characterization of Shelph2, a phosphatase of bacterial origin. By reverse genetics using CRISPR-Cas9 strategy, we endogenously tagged the gene, and showed that Shelph2 is stored in apical vesicles in the developing merozoites. We also demonstrated that it is dispensable for parasite RBC development, as the deletion of the gene did not affect invasion, parasite multiplication nor egress, suggesting possible functional redundancy with other parasite phosphatases.In the second part of this work, we aimed to describe the roles of PP1, PP4 and PP7. As they were described as likely essential, we set up in the laboratory a conditional knock-down strategy named the glmS ribozyme, with the idea of destabilizing the mRNA following self-cleavage of the ribozyme upon metabolite addition, here glucosamine. We successfully introduced the glmS sequence in 3’ of the genes of interest for PP4 and PP7 but we did not observe any significant protein depletion upon glucosamine addition, thus preventing us to use these lines to study PP4 and PP7 functions. Yet, these engineered parasite lines were used to analyze the subcellular localization of these phosphatases. As an alternative to the ribozyme, we used an inducible knock-out (iKO) approach based on a dimerizable Cre recombinase (DiCre system) that excises DNA fragments located between two loxP sites. We established two parasite lines, the iKO-PP7 that has not been further characterized and the iKO-PP1 strain. Using the iKO-PP1 parasites, we showed that PP1 is predominantly a cytosolic phosphatase mostly expressed during schizogony. Furthermore, the inducible excision of PP1 gene at two different time points of P. falciparum RBC cycle permitted us to reveal that PP1 plays two essential roles, one during schizogony and the other one at the time of parasite egress. This is to our knowledge the first description of a parasite phosphatase required for these developmental steps.

Report this publication

Statistics

Seen <100 times