Affordable Access

Role of osmolality and plasma volume during rehydration in humans.

Authors
Type
Published Article
Journal
Journal of applied physiology (Bethesda, Md. : 1985)
Publication Date
Volume
65
Issue
1
Pages
325–331
Identifiers
PMID: 3403476
Source
Medline
License
Unknown

Abstract

To determine how the sodium content of ingested fluids affects drinking and the restoration of the body fluid compartments after dehydration, we studied six subjects during 4 h of recovery from 90-110 min of a heat [36 degrees C, less than 30% relative humidity (rh)] and exercise (40% maximal aerobic power) exposure, which caused body weight to decrease by 2.3%. During the 1st h, subjects rested seated without any fluids in a thermoneutral environment (28 degrees C, less than 30% rh) to allow the body fluid compartments to stabilize. Over the next 3 h, subjects rehydrated ad libitum using tap water and capsules containing either placebo (H2O-R) or 0.45 g NaCl (Na-R) per 100 ml water. During the 3-h rehydration period, subjects restored 68% of the lost water during H2O-R, whereas they restored 82% during Na-R (P less than 0.05). Urine volume was greater in H2O-R than in Na-R; thus only 51% of the lost water was retained during H2O-R, whereas 71% was retained during Na-R (P less than 0.05). Plasma osmolality was elevated throughout the rehydration period in Na-R, whereas it returned to the control level by 30 min in H2O-R (P less than 0.05). Changes in free water clearance followed changes in plasma osmolality. The restoration of plasma volume during Na-R was 174% of that lost. During H2O-R it was 78%, which seemed to be sufficient to diminish volume-dependent dipsogenic stimulation.(ABSTRACT TRUNCATED AT 250 WORDS)

Statistics

Seen <100 times