Affordable Access

Publisher Website

Robust subspace clustering

Authors
  • Soltanolkotabi, Mahdi
  • Elhamifar, Ehsan
  • Candès, Emmanuel J.
Type
Published Article
Publication Date
May 23, 2014
Submission Date
Jan 11, 2013
Identifiers
DOI: 10.1214/13-AOS1199
Source
arXiv
License
Yellow
External links

Abstract

Subspace clustering refers to the task of finding a multi-subspace representation that best fits a collection of points taken from a high-dimensional space. This paper introduces an algorithm inspired by sparse subspace clustering (SSC) [In IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2009) 2790-2797] to cluster noisy data, and develops some novel theory demonstrating its correctness. In particular, the theory uses ideas from geometric functional analysis to show that the algorithm can accurately recover the underlying subspaces under minimal requirements on their orientation, and on the number of samples per subspace. Synthetic as well as real data experiments complement our theoretical study, illustrating our approach and demonstrating its effectiveness.

Report this publication

Statistics

Seen <100 times