Affordable Access

Access to the full text

Robust icephobic coating based on the spiky fluorinated Al2O3 particles

Authors
  • Starostin, Anton1
  • Strelnikov, Vladimir1
  • Valtsifer, Viktor1
  • Lebedeva, Irina1
  • Legchenkova, Irina2
  • Bormashenko, Edward2
  • 1 UB RAS, Academician Korolev St., 3, Perm, 614013, Russian Federation , Perm (Russia)
  • 2 Ariel University, Ariel, 407000, Israel , Ariel (Israel)
Type
Published Article
Journal
Scientific Reports
Publisher
Springer Nature
Publication Date
Mar 08, 2021
Volume
11
Issue
1
Identifiers
DOI: 10.1038/s41598-021-84283-w
Source
Springer Nature
License
Green

Abstract

Omniphobic and icephobic twin-scale surfaces based on the “urchin”-like fluorinated Al2O3 particles are presented. Combined effect of hierarchical topography and fluorination supplied to the surfaces omniphobic and icephobic properties. The study of the stability of the Cassie wetting state is reported. High apparent contact angles were accompanied with the low contact angle hysteresis and high stability of the Cassie air trapping wetting state. Time delay of the ice crystallization as high as 88±5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$88\pm 5$$\end{document} min was established when compared to the ice formation on flat aluminum and non-fluorinated “urchin”-like surfaces. Crystallized water droplets formed on the reported nano-structured surfaces were easily blown out by the air jet with the velocity of v=3.0±1.0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v=3.0\pm 1.0$$\end{document} m/s, (which is markedly lower than that common for exploitation of aircrafts and turbines). Heated “urchin”-like surfaces completely restored their omniphobic and icephobic surfaces after thawing. Qualitative analysis of water freezing is supplied.

Report this publication

Statistics

Seen <100 times